Проблематика журнала: Фундаментальные и прикладные аспекты медицинской микологии — биология возбудителей, клиника, диагностика, эпидемиология, иммунитет, терапия и профилактика микозов, грибы-контаминанты в лабораторных, клинических и других условиях.

Editorial policy: The Journal «Problems in Medical Mycology» specializes in original articles that describe innovative research on all aspects of Medical Mycology — biology of pathogens, clinic, diagnostic, epidemiology, immunity, therapy and prophylaxis of mycoses, fungi — contaminants in laboratory, clinical and other conditions.
СОДЕРЖАНИЕ

ПРОБЛЕМНЫЕ СТАТЬИ
Елинов Н.П. 10 лет журналу «Проблемы медицинской микологии» ... 11

КЛИНИЧЕСКАЯ МИКОЛОГИЯ
Васильева Н.В., Разнатовский К.Н., Коптрева А.П., Богомолова Т.С., Пункова М.А., Пинегина О.Н., Чилина Г.А., Босак И.А., Кубасова Н.А., Белусова Ж.А., Кулешова А.Б., Жуковский Р.О., Гризева Т.М., Владимирова И.С., Цветкова М.Г., Манушкина М.М., Холонай Н.Н., Синицын А.А., Клюева Т.А., Сазная В.В. Эпидемиология и клиника микозов в городах России. Результаты проспективного открытого многоцентрового исследования ... 14
Корнишенко В.Г., Васильева Н.В., Богомолова Т.С., Гудкова Ю.И. Диссеминированный кожно-лимфатический фарингит у больной с гипогонадотрофной гипоплазией .. 19
Жорж О.Н., Мирзабадзе А.С. Влияние интенсивной терапии на течение микоза стоп у больных с хронической почечной недостаточностью .. 24
Абдулова З.М., Нурматов У.Б. Селекционированные штаммы Aspergillus fumigatus Frezenius – продуцентов аллергенов .. 36

ЭКСПЕРИМЕНТАЛЬНАЯ МИКОЛОГИЯ
Журавлева Н.П., Чилина Г.А., Соловцова Г.И., Босак И.А. Селективная характеристика больных с микозами стоп .. 41
Желинокова Т.М. К вопросу о допустимом уровне микромицетов в воздухе помещений .. 44
Сулейманова Т.Х., Мурадова С.А., Караев З.О. Особенности ассоциативных взаимодействий Staphylococcus aureus и Escherichia coli с Candida albicans при Candida-колонизации гастроинтестинального тракта .. 53
Васильева Н.В., Разнатовский К.И., Котрехова Л.П., Богомолова Т.С., Пупкова М.А., Пинегина О.Н., Попова М.О., Чернопятова Р.М. Босак И.А., Нарышкина А.М., Кубасова Н.А., Белусова Ж.А., Кулешова А.Б., Жуковский Р.О., Гризева Т.М., Владимирова И.С., Цветкова М.Г., Манушкина М.М., Холонай Н.Н., Синицын А.А., Клюева Т.А., Сазная В.В. Эпидемиология и клиника микозов в городах России. Результаты проспективного открытого многоцентрового исследования .. 57
Корнишенко В.Г., Васильева Н.В., Богомолова Т.С., Гудкова Ю.И. Диссеминированный кожно-лимфатический фарингит у больной с гипогонадотрофной гипоплазией .. 58
Жорж О.Н., Мирзабадзе А.С. Влияние интенсивной терапии на течение микоза стоп у больных с хронической почечной недостаточностью .. 60
Абдулова З.М., Нурматов У.Б. Селекционированные штаммы Aspergillus fumigatus Frezenius – продуцентов аллергенов .. 63

НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ПО МЕДИЦИНСКОЙ МИКОЛОГИИ (XII КАШКИНСКИЕ ЧТЕНИЯ)

ТЕЗИСЫ ДОКЛАДОВ

Абдулова З.М. Спрей «Ламизил» в лечении микоза стоп .. 48
Абдулова З.М., Абдурахманова Н.А. Терапия у больных с микозами стоп .. 49
Абдулова З.М., Икромова Н.А. Бифидобактерин® в терапии больных микозом стоп .. 50
Абдулова З.М., Исмагилова Г.А. Корреляционные взаимосвязи показателей фагоцитоза у больных с микозами стоп .. 51
Абдулова З.М., Икромова Н.А. Бифидобактерин® в терапии больных микозом стоп .. 52
Абдулова З.М., Исмагилова Г.А. Корреляционные взаимосвязи показателей фагоцитоза у больных с микозами стоп .. 53
Абдулова З.М., Исмагилова Г.А. Корреляционные взаимосвязи показателей фагоцитоза у больных с микозами стоп .. 54
Абдулова З.М., Исмагилова Г.А. Корреляционные взаимосвязи показателей фагоцитоза у больных с микозами стоп .. 55
Абдулова З.М., Исмагилова Г.А. Корреляционные взаимосвязи показателей фагоцитоза у больных с микозами стоп .. 56
Абдулова З.М., Исмагилова Г.А. Корреляционные взаимосвязи показателей фагоцитоза у больных с микозами стоп .. 57
Абдулова З.М., Исмагилова Г.А. Корреляционные взаимосвязи показателей фагоцитоза у больных с микозами стоп .. 58
Абдулова З.М., Исмагилова Г.А. Корреляционные взаимосвязи показателей фагоцитоза у больных с микозами стоп .. 59
Абдулова З.М., Исмагилова Г.А. Корреляционные взаимосвязи показателей фагоцитоза у больных с микозами стоп .. 60
Биострова Е.Ю., Богомолова Е.В., Тырпов Ю.М., Панина Л.К. Особенности развития микромицетов под действием постоянных магнитных полей .. 60
Валгленен К.А., Власов Д.Ю., Крыжанов В.А. Влияние оптического излучения красной области спектра на развитие микромицетов .. 61
Васильева Н.В., Чилина Г.А., Свиридова К.В. Онкомикоз у больных пиэзарозом .. 61
Власов Д.Ю., Горбунов Г.А., Крыжанов В.А., Сафронова Е.В., Абакумов Е.В. Микромицеты в районе антарктической полярной станции «Веллингтон» 62
Власов Д.Ю., Зеленская М.С., Сафронова Е.В., Старцев С.А., Рябушева Ю.В. Разнообразие микромицетов в исторических зданиях Санкт-Петербурга .. 62
Връчанчан Н.А., Короткий Ю.В., Гриневич С.В., Балакир Л.А., Дудикова Д.М. Антигрибковая активность нового производного адаманта - ЮК-86 .. 63
Выборнова И.В. Возбудители кандидеза в Санкт-Петербурге .. 63
Герасимчук Е.В., Гладов Б.В., Герасимчук М.Ю. Микологическая эффективность противогрибковых
наружных средств у пациентов с миокозом стоп и онихомикозом .. 64
Глушико Н.И., Халдеева Е.В., Лисовская С.А., Пашиаков В.Р. Особенности подбора и применения средств противогрибковой обработки в больничных зданиях .. 64
Годовалов А.П., Быкова Л.П., Орхабинов Г.П. Характеристика Candida spp. в грибково-бактериальных
ассоциациях при воспалительных заболеваниях верхних дыхательных путей .. 65
Голубев В.И. Анти-Candida albicans активность дрожжей Pichia anomala .. 65
Голубинич В.Н., Капилин Н.Н., Голубинич А.С. Исследование противогрибковой активности хитозана .. 66
Гордеева С.В., Иванова Е.В., Борисенко С.В., Перунова Н.Б. Влияние иммуномодулирующих препаратов
на образование биопленок дрожжевыми грибами .. 66
Грайдосова О.В., Чупринова О.В., Мельникова А.И., Калинина Н.В., Губерский Ю.Д. Исследование грибкового поражения жилых помещений с целью его гигиенического нормирования .. 67
Гурин О.П., Блинов А.Е., Варламова О.Н., Дементьева Е.А., Тимохина В.И. Специфическая чувствительность к Candida albicans и Aspergillus niger при бронхиальной астме у детей .. 67
Гусева Е.В., Потапова О.В., Набиев А.П., Шкурупий В.А. Патоморфология поражения головного мозга мышей при кандидном менингоэнцефалите и его лечении композицией анфотерицина В с диметилдикректамином .. 68
Десятник Е.А., Борзова Ю.В., Хостелди С.Н., Попова М.О., Черновята Р.М., Игнатьева С.М., Зубаровская Н.И., Климянко Н.Н. Случай успешного лечения инвазивного дифтериоза легких и пневмощелевой пневмонии у реципиента трансплантата кроветворных стволовых клеток (ТКСК) .. 68
Долго-Сабурова Ю.В., Жорж О.Н., Мирзабалова А.К. Генитальные и экстратерагенитальные заболевания у женщин с хроническим рецидивирующим кандидозом гениталий .. 69
Егорова Е.Н., Миллер Д.А., Горькова М.А., Давыдова И.Б., Пустовалова Р.А. Совершенствование
преподавания лабораторной микологии на этапе постдипломной подготовки специалистов клинической и лабораторной диагностики .. 70
Елинов Н.П. Меланины у опаоко(фео)гифомицетов – патогенов и сапробов .. 71
Елинов Н.П. Планктонная и плэно-структурная форма жизнедеятельности микромицетов в различных условиях существования .. 72
Жильцова Е.Е., Степанова С.В. Оценка эффективности применения атифина в лечении онихомикозов .. 73
Заславская М.И., Лукова О.А., Махрова Т.В. Влияние TNFα и INFα на взаимодействие бактериальных эпителиоцитов с Candida albicans .. 73
Заславский Д.В., Егорова Ю.С., Олюбинникова О.В, Еремина Н.В., Лагутина О.Ю., Княжиче С.Н. Анализ
заболеваемости дерматомикозами и чесоткой в Ленинградской области за последние 64 года .. 74
Заполко П.А. Орофарингеальный кандидоз при ВИЧ-инфекции .. 74
Знатицкая Н.В., Нарыков Р.Х., Малинович И.Т., Софронов В.В. Иммунологические особенности
кандидозной инфекции при язвенной болезни двенадцатиперстной кишки у детей .. 75
Иванова О.С., Лазарев В.В. Роль Candida species в патогенезе персистирующего аллергического ринита
у детей .. 75
Игнатьева С.М., Бабенко Г.А., Гвоздева Л.С., Глухова С.А., Сафронова Е.В. Биологические особенности некоторых избранных Aspergillus spp. .. 76
Калинин Н.Н., Иванюк Т.В., Иванюк Ю.П. Частота выделения Candida spp. от новорожденных и их
биологические свойства .. 77
Касаткин Е.В., Якубова А.В. Хронический кандидоз кишечника как маркер вторичного иммунодефицита при папилломавирусной урогенитальной инфекции .. 77
Касьянов О.И., Касьянов А.О. Клинико-иммунологические особенности микроспории .. 78
Касьянов О.И., Садыков М.К., Касьянов А.О. Эпидемиология онихомикоза в г. Душанбе .. 78
Киршев Н.А., Климова И.П., Григориади А.С., Якубова А.Б. Микромицеты как биодеструкторы
углеводородов и потенциальные возбудители микозов в нефтезагрязненных регионах .. 79
Кирдшева И.Ю., Богомолова Е.В., Пашковская Т.В. Адаптация микромицетов к некоторым биоцидам,
используемым в реставрации .. 79
Климова Н.А., Соколова Т.В. Атопический дерматит и сенситизация к липофиным дрожжам рода
Malassezia .. 80
СОДЕРЖАНИЕ

Неверова Ю.В., Мирзабаева А.К., Мелехина Ю.Э. Гуморальный полилипопротеиновый синдром и хронический кандидоз кожи и слизистых оболочек - описания клинического случая ... 100
Нечаeva О.С., Ключарева С.В. Раноночный лишай у больных с аскис, особенности лечения и подходы к терапии ... 101
Новикова А.А., Бахметева Т.М. Клинико-эпидемиологические особенности грибковых заболеваний кожи населения г. Воронежа ... 101
Новикова А.А., Бахметева Т.М. Опыт применения гонофората у больных вульвовагинальным кандидозом ... 102
Новикова А.А., Бахло Л.Р., Донцова Е.В. Опыт применения крема «Залазин®» в лечении микозов гладкой кожи у пациентов с болезнями соединительной ткани ... 103
Пакина Е.Н., Смирнова И.П., Хасанов И.Щ., Шнейдер Ю.А. Л-лизин-альфа-оксидаза - экзоцеллюлозный фермент Trichoderma sp. ... 103
Пикунова О.И., Генералова Е.В. Характеристика антиагрегативной активности слюны у подростков с рекуррентными респираторными инфекциями .. 104
Пинезина О.Н., Сатурнов А.В., Выборнова Г.Г., Пальваль Г.В., Плахотнюк Л.В., Боголюбова Т.С., Васильева Н.В. Изучение влияния биомикроволн в биопленках на венозных и уретральных катетерах в отделениях реанимации и интенсивной терапии .. 105
Прилепская В.Н., Анкирская А.С., Байрамова Г.Р., Муравьева В.В. Эффективность итраконазола при лечении хронического рецидивирующего вульвовагинального кандидоза .. 105
Рахимов И.Р. Опыт лечения трихопитоза Текназолом ... 106
Рахимов И.Р., Абидова З.М. Опыт применения противогрибкового препарата «Флунол» при кандидозе слизистой оболочки полости рта у больных с пузьрчаткой 106
Ревяко Д.А., Шляга И.Д., Новикова Н.Н. Этиотропная терапия грибковых и грибково-бактериальных риносинуситов .. 107
Савина М.В., Скрипченко Н.В., Команцев В.Н., Иванова Г.П., Иванова М.В. Выявленные потенциалы мозга в диагностике менингоэнцефалитов у детей ... 108
Салия Н.С., Нестерук А.Г. Пример расчёта степени поражения помещения микромицетами ... 109
Семёдова А.А. Биологическая активность антигрибкового полиненового антибиотика филипина ... 110
Скрипченко Н.В., Трофимова Т.Н., Иванова М.В., Иванова И.В., Вилькицкая А.А., Егорова Е.С. Характеристика сосудистой патологии при бактериальных гнойных и бактериально-грибковых менингитах у детей ... 110
Скопова И.А., Маркошевский Д.Т., Иваньев М.А. Значимость определения аллельного состояния пятой хромосомы у Candida albicans .. 111
Соболев А.В., Фролова Е.В., Акк О.В., Филиппова Л.В., Учеваткина А.Е., Шкорупа М.Л. Особенности иммунореактивности у больных с микогенной аллергией .. 111
Соков А.М., Павлова И.З., Мамедова А.А. Сравнение активности некоторых строительных биоцидов в отношении микромицетов-биодеструкторов ... 112
Сливанова А.А., Буса А.А., Синицкая И.А. Особенности морфогенеза штаммов Cryptococcus neoformans, выделенных из окружающей среды ... 113
Сливанова А.А., Савицкая Т.И., Синицкая И.А., Краснова Э.В. Электронно-микроскопическое изучение порового аппарата цент Trichophyton tonsurans Malmsten .. 114
Сливанова А.А., Синицкая И.А. Ультраструктурные аспекты старения клеток некоторых видов рода Aspergillus ... 114
Сурикова П.П., Шафранова Т.В. Медицинский анализ микотических заболеваний в условиях гарнизонных медицинских учреждений ... 115
Суханова Ю.А. Меры профилактики и организации микологического мониторинга в помещениях ЛПУ .. 116
Тимохина Т.Х., Николенко М.В., Варныцына В.В., Леонов В.В. Влияние экзометаболитов ассоциативной микрофлоры на пролиферативную активность Candida albicans .. 116
Тихоновская И.В., Адаскевич В.П., Шафранская Т.В. Миокозы лица: случай из практики ... 117
Ткаченко Г.А., Гришина М.А., Савченко С.С., Вовчкова Н.В., Левинская С.С., Антонов В.А., Липницкий А.В. Перспективы использования ПЦР в реальном времени для диагностики кокцидиоидомикоза .. 117
Ткаченко Е.Н., Шевякова Е.В., Барышникова Н.В., Матвеева Н.В. Частота выявляемости грибных рода Candida при язвенной болезни двенадцатиперстной кишки, ассоциированной с Helicobacter pylori .. 118
Уткин Е.В., Лукима И.А. Современные особенности терапии вагинальных кандидозов ... 118
Файзуллина Е.В., Камаева С.С., Похлёбкина Л.А., Сторона О.В., Камаев А.А. Изучение фармакотерапевтической эффективности 20% мази резорцина при лечении онихомикоза .. 119
Файзуллина Е.В., Филиппова Л.А., Эльбакова А.Ю. Особенности микробного состава и микотическая колонизация кожи при псориазе .. 120
Филипова А.В., Васильева Н.В., Рождественская Е.И., Фролова Е.В., Учеваткина А.Е. Особенности взаимодействия разных штаммов Cryptococcus neoformans с микрофагами .. 120
Фризин В.В., Глущко Н.И., Фризин Д.В., Боровкова Д.А. Некоторые особенности микотической инфекции у больных аутоиммунным типом диагностики .. 121
Фризин В.В., Фризин Д.В. Цеолит в лечении кандидоза крупных складок кожи ... 122
Фролова Я.Н., Алешикина А.Б. Антагонистическая активность Saccharomyces cerevisae по отношению Candida albicans .. 122
Фурман О.С., Връччен А.А., Короткий Ю.В., Гриневич С.Ф., Балахир А.В., Дудикова Д.М. Антибактериальная активность нового производного аминосидов - JOK-96 .. 123
Хаддева Е.В., Лисовская С.А., Глищук Н.И., Лебедин Ю.С. Контаминация плодовой продукции сложно-патогенными и аллергенными грибами ... 123
Хисматулина З.Р., Мухамадеева О.Р., Алиева Г.А., Шаймарданов В.Н. Этиологическая структура зооантропонозных дерматомикозов в г. Уфе за 2001-2008 гг. .. 123
Хостелц С.Н., Борзова Ю.В., ДецятICK А.В., Рыжиков А.В., Черножёнова Р.М., Богомолова Т.С., Аравийский Р.А., Камко Н.Н. Опыт лечения низобивного зиомкоза в Санкт-Петербурге 124
Хусраизанова Р.Ф., Мингазова С.Р., Бакиров А.Б., Шагалина А.У. Микробиота мокроты больных профессиональным бронхитом .. 125
Чащин А.Ю., Ишакова Н.Г., Шинакова Н.А. Заболеваемость микозами стоп и особенности их клинического течения ... 125
Шабашова Н.В., Мирзабаев А.К., Фролова Е.В., Увечаткина А.Е., Филиппова Л.В., Симбарская М.А. Использование местной иммунотерапии в комплексном лечении хронического рецидивирующего кандидозного вульвовагинита .. 126
Шведова Н.В., Клементова И.А., Мишина Ю.В. Комплексный метод лечения дрожжевых поражений кожи, кандидозных онихий и паронихий с применением современных иммуномодуляторов .. 127
Шлягов И.Д., Сердюкова О.А., Шувалов А.М. Хронические гиперпластические ларингиты, осложненные грибковой инфекцией: диагностика и лечение .. 127
Ющиков А.А., Кулакина Л.М., Павлов О.И., Синергу А.Г., Дубняк Н.С. Участие Candida spp. в формировании воспалительных заболеваний различной локализации .. 128
Яковлев А.Б. Рекомендуемая частота и частота клинико-микологических исследований у больных онихомикозами после системной терапии .. 128
Якупов А.Н., Коренянов А.Р., Доцакова Е.С., Черножёнова О.А., Саидова Т.И., Чунрикова Т.В., Залуцкая М.А. Изучение эффективности, безопасности и переносимости препаратов «Травоген» и «Травокорт» у больных микозами кожи .. 129

CONTENTS

PROBLEM ARTICLES

CLINICAL MYCOLOGY

Zhorzh O.N., Mursabalaeva A.K. Cytomorphological characteristic of cervix uteri at chronic recurrent candidosis of genitalis and bacterial vaginoses .. 24
Abidova Z.M., Nurmatova U.B. The clinic course and methods of treatment of zooanthroponose thrichophytia in adults with localization of defeats in the pubic region .. 31

EXPERIMENTAL MYCOLOGY

Zheltikova T.M. Threshold of mold spores concentration in buildings ... 41
Suleymanova T.Ch., Muradova S.A., Karave Z.O. Peculiarity of interactions of Staphylococcus aureus and Escherichia coli in association with Candida albicans in Candida-colonization of gastrointestinal tract ... 44

SCIENTIFIC–PRACTICAL CONFERENCE IN MEDICAL MYCOLOGY (XII KASHKIN REAdINGS)

ABSTRACTS

Abidova Z.M. Spray «Lamizil» in the treatment of feet mycosis .. 48
Abidova Z.M., Abdurakhmanova N.A. «Terbihil» in onichomycoses therapy in patients with diabetes mellitus .. 49
Abidova Z.M., Ismailova G.A. «Teknazol» (itraconazol) in the complex therapy of onichomycosis .. 50
Abidova Z.M., Ikramova N.D. Bifidumbacterin-L in the therapy of patients with feet mycosis .. 49
Aleshakina A.V. Cytokine profile in bowels at asstosiation virus, bacteria and Candida sp. .. 52
Ankirskaya A.S., Mironova T.G., Muraviova V.V. The monitoring of Candida spp. colonization of new-born children in reanimation and intensive therapeutics care unit .. 53
Асташина С. М. Опыт лечения больных с Тинейя крурис — 53
Авалевская Е., Барышникова Н., Сheyakov М.А., Саворов А.Н. Некоторые изолированные гены Candida albicans в больных с носовыми полипами — 50
Авалевская Е., Нилова Л.Я., Сheyakov М.А., Сиктин С.И., Петров Л.Н. Инфильтративный гастроэнтерит, связан с наличием Candida spp. — 51
Аваненко В.Л., Сheyakov М.А. Некоторые вопросы эндоскопической дифференциальной диагностики Candida esophagitis — 52
Байдусянова А.И., Васарова Г.К., Мнаидарова Р.С., Байдусянов Н.С. Микобиоты верхних дыхательных путей в атмосфере — 54
Байдусянова А.И., Васарова Г.К., Мнаидарова Р.С., Байдусянов Н.С. Микобиоты верхних дыхательных путей в атмосфере — 54
Баринова К.В., Сhiпapev С.М. Псеводоболезни, возникающие в результате действия микроорганизмов, в зависимости от возраста — 55
Баринова К.В., Власов Д.Ю., Сhiпapev С.М. Псеводоболезни, возникающие в результате действия микроорганизмов, в зависимости от возраста — 55
Белова Е.А., Гусева С.Н. Состояния, нормализующие эпителиальные факторы в своде при сенной лихорадке — 57
Боржова Л.Г., Лавриненко Е.В. Микобиоты, возникающие в результате действия микроорганизмов, в зависимости от возраста — 58
Боржова Л.Г., Лавриненко Е.В. Микобиоты, возникающие в результате действия микроорганизмов, в зависимости от возраста — 58
Боржова Л.Г., Лавриненко Е.В. Микобиоты, возникающие в результате действия микроорганизмов, в зависимости от возраста — 58
Боржова Л.Г., Лавриненко Е.В. Микобиоты, возникающие в результате действия микроорганизмов, в зависимости от возраста — 58
Боржова Л.Г., Лавриненко Е.В. Микобиоты, возникающие в результате действия микроорганизмов, в зависимости от возраста — 58
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Галлинен Е.В., Павлов Ю.М., Панова Л.К., Панова Л.К. Опыт лечения больных с гнойной пневмонией — 60
Kaplin N.N., Ivakhnjuk TV, Ivakhnjuk ILP. A frequency of isolation of Candida spp. from new-born and their biological properties ...77
Kasatkin E.V., Lyalin VA. Chronic candidosis of vagina as a marker of secondary immunodeficiency with HPV urogenital infection ...77
Kasymov O.I., Kasymov A.O. Clinical and immunological features of microsporia ...78
Kasymov O.I., Salimov B.M., Kasymov A.O. Epidemiology of onychomycosis in Dushanbe ...78
Khaldeeva EV, Lisovskaya SA, Glushko NI, Lebedin YuS. Contamination of fruits and vegetables by opportunistic and allergic fungi ...123
Khusnazaranova RE, Mingazova SR, Bakirov AB, Shagalina AU. Mycobiota of a phlegm at patients with professional bronchitis ...125
Kireyeva N.A., Klimyna IP, Grigoriadi AS, Yakupova AB. Micromycetes as biodeterioration of hydrocarbons and potential agents of mycoses in the oil polluted regions ...79
Kirtsideli IYu, Bogomolova EV, Pashkovskaya TV. Adaptation of micromycetes to some biocides widely used in restoration practice ...79
Klivitskya NA, Sokolova TV. Atopic dermatitis and hypophylic Malassezia spp. sensibilization ...80
Kluchareva TV, Danilov SI, Neechaeva OS. Epidemiology of chronic mycoses of feet and viral pathology of the skin, their treatment ...80
Kolontaya IJ, Anchupane IS, Miltinsh AP. Results of dermatoscopy signs of pigmentet skin lesions at patients with Pityriasis versicolor ...83
Korepanov AR, Yakubovich AI, Chuprin AE, Konstantinov IM. The treatment of fungal infection in men with «Zalain»* ...84
Korzheva OV. Efficiency of onychomycosis complex pathogenetic therapy in the elderly age persons ...85
Kozayaev MA, Shkarupy VA, Koroshevskaya YA. Structural changes in the liver of mice in case of mycobacterio-candidous mixt-granulomatosis ...81
Kozlova OP, Chernypytova RM, Mirzabalaeva AK, Klimko NN. Case of successful treatment of women with abdominal actinomycosis ...81
Kozlova YI, Aak OV, Chilina GA, Bogomolova TS, Chernypytova RM, Larina LS, Vasileva NV. Klimko NN. Clinical forms of mycogenic allergy at inhabitants of premises, contaminated by micromycetes ...82
Kuha Y, Arykpayeva UL, Akimbeteva A, Shapieva Zh, Akhmetova B. Testing results of blood sera in presence of antibodies to Trichophyton rubrum in ELIZA with using of monoclonal antibodies (MAbs) ...82
Kuha Y, Mukanov K, Kiyan V, Sautelenova D. A characteristic of monoclonal antibodies to polysaccharide antigen of Trichophyton verrucosum ...90
Kulakovskaya TV, Kulakovskaya EV, Shashkov AS, Golubev WI. The activity of cellubiose lipids against pathogenic yeasts ...86
Kuleshov AV, Mitrofanov VS. Allergic bronchopulmonary aspergillosis: six year of remission and exacerbation again 87
Kulko AB, Marfenina OE, Ivanova AE. Variability of Aspergillus fumigatus strains isolated from pulmonary tuberculosis patients ...87
Kunelskaya VA, Machulin AI. Influence of Candida-bacterial associations in development of chronic adenoiditis at children ...88
Kunelskaya VYA, Shadrin GB. The treatment and prevention maintenance otomycosis on modern level ...88
Kuzmina DA, Shabashova NV, Novikova VP, Orishak EA, Shabalov AM. Candida spp. and microbocenosis of oral cavity in children with caries descompensatio ...86
Lebedin YULS, Grachev AV. Immunoferment methods of discovery of antigens at allergenic and toxigenic Aspergillus spp., Alternaria spp., Phoma spp., Fusarium spp., in feeding products and home materials ...90
Leonov VN, Varntsitsa VV, Timokhina TH, Paromova IJ, Nikolaenko MV, Kosterina VC, Ryabinina AP. Estimations of the ability to form a biofilm by Candida spp. isolated from different sources ...91
Lisovskaya SA, Glushko NI, Khaldeeva EV, Fassakhov RS. Adhesion and resistance as estimation's criteria of pathogenic potential for Candida albicans clinical strains ...91
Lukmanova KA, Galumziana NE, Melentyev AI, Aktuganov GE, Muhamedeva OR, Kireyva RM. Salihova NH. Working out and preliminary trial of the new antymycotic remedy on base of bacterial strain Bacillus subtilis ...92
Lukova OA, Makhrova TV, Zaslavskaya MI. Effect of «Derinat» on the system «Candida albicans - buccal cells» ...92
Malova IO. The treatment of urogenital infection: what's the perspective? ...94
Markozashvili DT, Smolina NA, Ignatieva SM. DNA typing of Candida spp. by RAPD-analysis ...95
Marfenina OE, Fomicheva GM, Vasilienko O V, Kulko AB. The comparison of the molecular and ecophysiological properties of the clinical and saprotrrophic strains of Aspergillus sydowii ...96
Mavlyanova Sh.Z. The remote results of hyposensibilizing aktive immunotherapy of patients and atopic dermatitis with mycogen sensibilization ...93
Mavlyanova Sh.Z., Tillavberdiev Sh.A. The new approaches to treatment of oral candidosis in immunocompromised patients ...93
Medvedeva TV, Leina LM, Suhanova YuA, Mitrofanov VS, Drozdova LN. Case of microsporia, caused by rare fungi ...96
СОДЕРЖАНИЕ

Melekhina Yu., Frolova EV., Uchevatkina A.E., Filippova L.V., Shevakov M.A., Vaslieva N.V., Klinko N.N.

Пeculiarities of the immune answer of gullet receive candidosis in HIV - negative patients 97

Minenko E.A., Bogomolova E.V., Kirtsideli I.Yu. Presence of thermotolerant strains of opportunistic fungi in the air of
dwelling houses .. 98

Mishina Yu.V., Shebashnaya N.V. «Zalain» (sertaconazol) in treatment of the skin fungal diseases 99

Muhametshina R.T., E.A. Kabrera E, Alimova E.K. Morphological characteristic and molecular phylogeny of two
monospore clones of Trichoderma species micromycetes chosen from oilshames on republic Tartarstan territory 99

Nechaeva O.S., Kluchareva S.V. Pityriasis versicolor in patients with acne, peculiarities of course and treatment
possibilities ... 101

Neverova UV., Mirsabalaeva A.K., Melekhina I.E. Autoimmune polyendocrine syndrome with cronical candidosis:
the clinical case .. 100

population .. 101

Novikova L.A., Byalik I.R., Donitzova E.V. The experience of treatment the skin mycoses by «Zalain»* cream in
patients with connective tissue diseases ... 103

Pakina I.E., Smirnova I.P., Hasanov I.Sh., Shneyder Yu.A. L-lysine-alpha-oxidase - exocellular ferment
Trichoderma sp. ... 103

Pikuzza O.I., Generolova E.V. Description of antiadhesive activity of saliva in adolescens with recurrent respiratory
infections ... 104

Pinegina O.N., Saturnov A.V., Vibornov G.G., Palval G.V., Plahotnik L.V., Bogomolova T.S., Vasileva N.V. Species
diversity study of microorganisms within biofilms on the intravascular and urethral catheters in intensive care unit 105

Prilepskaya N.V., Aniksarkiya A.S., Bayramova G.R., Muratyyeva V.V. In traconazole efficiency at treatment of chronic
relapsing vulvovaginal candidiosis .. 105

Rahimov I.R. An experience of trichophytia treatment by Teknazolum .. 106

Rahimov I.R., Abidova Z.M. Experience of antymycotic «Flunol» using in patients with oral candidosis and pemphigus ... 106

Redko D.D., Shlyaga I.D., Novikova N.V. Etiotropic therapy of fungal-bacterial rhinosinusitis. 107

Sagaryuk E.A., Nesteruk A.G. An example of estimation of building damage level with micromycetes 108

Samedova A.A. The biological activity of antifungal polyen antibiotic Filipin ... 110

meningoencephalitis .. 108

Shebashnaya N.V., Mirsabalaeva A.K., Frolova E.V., Uchevatkina A.E., Filippova L.V., Simbarskay M.L.
Employment of local immune therapy in complex treatment of the chronic recurrent candidosis vulvovaginitis 126

Shebashnaya N.V., Klemenova I.A., Mishina Yu.V. Complex method of the treatment of yeast skin defeats, candida
onychia and paronychia with applications of modern immunomodulators .. 127

Shlyaga I.D., Serdyukova O.A., Petkevich M.M. Chronic fungal laryngitis: diagnostic and therapy 127

Skripchenko N.V., Trofimov T.N., Ivanova M.V., Ivanova G.P., Vnilits A.A., Ergova E.S. The characteristic of
vascular pathology at purulent bacterial and bacterio-fungal meningitis in children. 110

Smolina N.A., Markozashvili D.T., Ignatieva S.M. Significance of allele state determination of the fifth chromosome
in Candida albicans. .. 111

Sobleev A.V., Frolova E.V, Aak O.V, Uchevatkina A.E, Filippova L.V, Shkoruba M.L. The peculiarities of immune
response in patients with mycogenous allergy .. 111

Sohov A.M., Pavlova I.E., Mametyeva A.A. Comparison of some building biocides activity in respect of
mycomecetes-biodestructors .. 112

Stepanova A.A., Bosac I.A, Sinitskaya I.A. Peculiarities of different strains Cryptococcus neoformans morphogenesis
isolated from environment .. 113

Stepanova A.A., Savitskaya I.I., Sinitskaya I.A., Krasnova E.V. Electron-microscopic investigations of sepal pore
apparatus in Trichophyton tonsurans Malmisten ... 114

Stepanova A.A., Sinitskaya I.A. Ultrastructural aspects of growing obsolete of some species cells from Aspergillus
genus ... 114

Sukhanova Yu.A. Measures of prophylaxis and organization of mycological monitoring in dwellings of curely-
prophylactic statements ... 116

Surinov B.P., Sharovsky A.N., Abramova M.R. A possibility secretion of volatile chemosignals in laboratory animals
affecting the state of intact individuals at biological preclinical tests ... 115

Timokhina T.H., Nikolenko M.V., Varnitsina V.V., Leonov V.V. The influence of exometabolites of the associative
microbiota in the proliferative activity of Candida albicans .. 116

Tkachenko E.I., Shveyakov M.A., Avaluve E.B., Baryshnikova N.V., Mavtveeva N.V. Frequency of Candida species
finding at duodenum ulcer associated with Helicobacter pylori .. 118

Perspectives of real-time PCR using for the coccidioidomycosis diagnosis ... 117

Tykanovskaya I.V., Nadasovich VP, Shafranskaia TV. Tinea of the face: cases report 117

Utkin E.V., Lukina N.A. Modern peculiarities of vaginal candidosis therapy .. 118

Valgonen K.A., Vlasov D.Yu., Krylenkov V.A. Red optical radiation influence on micromycetes development 61
Vasilyeva N. V., Chilina G.A., Sviridova E.V. Onychomycosis in patients with psoriasis .. 61
Vlasov D.Yu., Gorbunov G.A., Krylenko V.A., Sazonova E.V., Abakumov E.V. Micromycetes on the area of
Antarctic polar station «Bellinzhauzen» ... 62
Vlasov D.Yu., Zelenskaya M.S., Sazonova E.V., Startsev S.A., Ryabushka I.V. Diversity of micromycetes in the
historical buildings of Saint-Petersburg ... 62
Vrynchann N.A., Korotki Y.V., Grinevich S.V., Balakir L.V., Dudikova D.M. Antifungal activity of the new derivative
of adamantane - UK-86 ... 63
Vebornova I.V. Agents of candidemia in Saint Petersburg ... 63
Yakovlev A.B. The advisable divisibility and frequency of clinico-mycological tests in patients with onychomycoses
after the systemic therapy .. 128
Yakubovich A.I., Korepanov A.R., Doshanova E.S., Chernigova O.A., Soldatova T.I., Chuprikova T.V.,
and laboratory mycology teaching for physicians of different specialties 70
Yelinov N.F. Melanines in opaco(phaeo)hyphomycetes – pathogens and saprobes 71
Yelinov N.F. The planktonic and biofilm-structural forms of micromycetes life in several condition of existence 72
Yutskovsky A.D., Kulagina L.M., Paulov O.I., Singur L.G., Dubnyak N.S. Participation of Candida spp. in
formations of various localization inflammatory diseases .. 128
Zaslavskaia M.I., Lukova O.A., Makhrova T.V. Influence of TNFα and INFα on the interaction buccal epithelial cells
with Candida albicans .. 73
and scabies morbidity analysis for the last 64 years in Leningrad region 74
Zatoloka P.A. Oropharyngeal candidosis by HIV-infection ... 74
Zhiltsova E. E., Stepanova S.V. Evaluate the effectiveness of the treatment of onychomycosis with Atifin 73
Ziatdinova N.W., Narykov R.C., Malanicheva T.G., Sofronov WW. Immunological peculiarities of Candida
infection at ulcerous illness of children’s duodenum ... 75
5 апреля 1999 г. был подписан «в печать» первый номер первого тома оригинального научно-практического журнала «Проблемы медицинской микологии», впервые созданного в России за всю её многовековую историю [1].

Первоначально, перед выпуском из печати первого номера, были сформированы редакционная коллегия в составе главного редактора, трёх его заместителей, ответственного секретаря и зав. редакцией (в настоящее время, из-за ухода из жизни О.К. Хмельницкого, редакционная коллегия состоит из 4-х человек); научно-редакционный совет журнала в январе 1999 г. состоял из 26 человек, в настоящее время его состав возрос до 29 человек, включая известных микологов из зарубежных стран: доктора Дж. Беннетта (США), доктора М.А. Вивиани (Италия), доктора Б. Дюпона (Франция), доктора И. Полоска (Израиль), доктора Х.-Й. Титца (Германия) и доктора Ф. Штайба (Германия).

Правила оформления статей, представляемых авторами для публикации в журнале, с регулярным постоянством появляются на его страницах, начиная с первого номера. Статьи могут быть представлены на одном из двух принятых редакцией языков — русском или английском.

Проблематика журнала обозначена на титульном листе каждого номера, опубликованного в течение 10 истекших лет; в ней отражено стремление редакционной коллегии и научно-редакционного совета охватить фундаментальные и прикладные аспекты медицинской микологии (включая клиническую, лабораторную, санитарную) с учётом её постепенного развития и совершенствования.

За период с 1999 г. до 2009 г. издано 40 номеров журнала, то есть 1 номер в квартал и 4 номера в год (один том), а за 10 лет — 10 томов.

Материалы, публикуемые в журнале, в соответствии с выше обозначенной проблематикой, подвергались рецензированию. Фамилия рецензента в обязательном порядке указывалась в подписи к статье. При необходимости статьи возвращали для доработки с учётом сделанных замечаний рецензентов. После этого отобранные статьи для публикации проходили утверждение на заседании редколлегии и научно-редакционного совета.

Распределение публикаций в журнале осуществляется по следующему ранжиру:

1. Проблемные статьи или обзоры, лекции на избранные темы по специальности.
2. Клиническая микология.
3. Экспериментальные исследования, или экспериментальная микология.
4. Рецензии на новые монографические и другие издания по микологии.
5. Хроника и информация (памятные даты, итоги отечественных и зарубежных конгрессов, съездов, конференций и т.п.).

В 1999 г. журнал был зарегистрирован в Комитете по делам печати, телерадиовещания и средств мас-

Каждый том журнала включает алфавитный указатель авторов публикаций и предметный указатель на русском и английском языках.

Подводя итоги работы редакции журнала за истекшие 10 лет, можно отметить следующие, заслуживающие внимания, вехи на пути становления и совершенствования журнала «Проблемы медицинской микологии»:

1. Упрочение позиций «Медицинской микологии» как самостоятельной науки, базирующейся на собственных объектах и методах; к тому же еще в 1969 г. Р.Х. Уиттакер поместил грибы в самостоятельное царство Fungi [2]. Несмотря на последующие некоторые изменения, уточнения и трансформации в систематике и таксономии грибов, позиция царства Fungi укрепилась и ныне используется в мире не только специалистами-систематиками, но и учеными, косвенно затрагивающими проблемы или вопросы таксономии в своих работах.

2. Устранение «теней забвения» имени выдающегося отечественного ученого Николая Васильевича Сорокина — основоположника медицинской микологии в России, работавшего в ряду с великими Л. Пастером, А. де Бари, Р. Кохом и другими, т.е. с учеными, фактически создававшими в широком понимании учене о микроорганизмах. Н.В. Сорокин одним из первых в мире опубликовал труд по болезнетворным микромицетам и бактериям в четырех томах [1882 (в. I), 1883 (в. II), 1884 (в. III), 1886 (в. IV)]. Н.В. Сорокин впервые в России начал университетское преподавание общей и медицинской микологии Н.В. Сорокина впервые в России начал университетское преподавание общей и медицинской микологии.

3. Более выпукло представлена неутомимая деятельность учения о микроорганизмах. Н.В. Сорокин одним из первых в мире опубликовал труд по болезнетворным микромицетам и бактериям в четырех томах [1882 (в. I), 1883 (в. II), 1884 (в. III), 1886 (в. IV)]. Н.В. Сорокин впервые в России начал университетское преподавание общей и медицинской микологии в 1871 г. [3–5].

3. Более выпукло представлена неутомимая научно-организационная деятельность з.д.н. РФ, лауреата государственной премии, д.м.н., профессора П.Н.Кашкина (04.01.1902-30.04.1991) [6–8] — основоположника медицинской микологии в России, работавшего в ряду с великими Л. Пастером, А. де Бари, Р. Кохом и другими, т.е. с учеными, фактически создававшими в широком понимании учене о микроорганизмах. Н.В. Сорокин одним из первых в мире опубликовал труд по болезнетворным микромицетам и бактериям в четырех томах [1882 (в. I), 1883 (в. II), 1884 (в. III), 1886 (в. IV)]. Н.В. Сорокин впервые в России начал университетское преподавание общей и медицинской микологии в 1871 г. [3–5].

3. Более выпукло представлена неутомимая научно-организационная деятельность з.д.н. РФ, лауреата государственной премии, д.м.н., профессора П.Н.Кашкина (04.01.1902-30.04.1991) [6–8] — основоположника медицинской микологии в России, работавшего в ряду с великими Л. Пастером, А. де Бари, Р. Кохом и другими, т.е. с учеными, фактически создававшими в широком понимании учене о микроорганизмах. Н.В. Сорокин одним из первых в мире опубликовал труд по болезнетворным микромицетам и бактериям в четырех томах [1882 (в. I), 1883 (в. II), 1884 (в. III), 1886 (в. IV)]. Н.В. Сорокин впервые в России начал университетское преподавание общей и медицинской микологии в 1871 г. [3–5].

3. Более выпукло представлена неутомимая научно-организационная деятельность з.д.н. РФ, лауреата государственной премии, д.м.н., профессора П.Н.Кашкина (04.01.1902-30.04.1991) [6–8] — основоположника медицинской микологии в России, работавшего в ряду с великими Л. Пастером, А. де Бари, Р. Кохом и другими, т.е. с учеными, фактически создававшими в широком понимании учене о микроорганизмах. Н.В. Сорокин одним из первых в мире опубликовал труд по болезнетворным микромицетам и бактериям в четырех томах [1882 (в. I), 1883 (в. II), 1884 (в. III), 1886 (в. IV)]. Н.В. Сорокин впервые в России начал университетское преподавание общей и медицинской микологии в 1871 г. [3–5].

3. Более выпукло представлена неутомимая научно-организационная деятельность з.д.н. РФ, лауреата государственной премии, д.м.н., профессора П.Н.Кашкина (04.01.1902-30.04.1991) [6–8] — основоположника медицинской микологии в России, работавшего в ряду с великими Л. Пастером, А. де Бари, Р. Кохом и другими, т.е. с учеными, фактически создававшими в широком понимании учене о микроорганизмах. Н.В. Сорокин одним из первых в мире опубликовал труд по болезнетворным микромицетам и бактериям в четырех tomах [1882 (в. I), 1883 (в. II), 1884 (в. III), 1886 (в. IV)]. Н.В. Сорокин впервые в России начал университетское преподавание общей и медицинской микологии в 1871 г. [3–5].

3. Более выпукло представлена неутомимая научно-организационная деятельность з.д.н. РФ, лауреата государственной премии, д.м.н., профессора П.Н.Кашкина (04.01.1902-30.04.1991) [6–8] — основоположника медицинской микологии в России, работавшего в ряду с великими Л. Пастером, А. де Бари, Р. Кохом и другими, т.е. с учеными, фактически создававшими в широком понимании учене о микроорганизмах. Н.В. Сорокин одним из первых в мире опубликовал труд по болезнетворным микромицетам и бактериям в четырех томах [1882 (в. I), 1883 (в. II), 1884 (в. III), 1886 (в. IV)]. Н.В. Сорокин впервые в России начал университетское преподавание общей и медицинской микологии в 1871 г. [3–5].
микозами на всей территории России, что также будет способствовать укомплектованию слушателей на учебных циклах на кафедрах, размещенных на территории НИИ медицинской микологии им. П.Н. Кашкина и его клинической базе.

Таким образом, за 10 прошедших лет журнал «Проблемы медицинской микологии» не только был создан формально, но и фактически приобрел достаточную широкую известность в разных регионах России и ближнего зарубежья, а также в отдельных странах дальнего зарубежья. Его редакция стремится активно и действительно реагировать на важные события и свершения по учебно-научной специальности «Медицинская микология» и смежным с нею дисциплинам.

У нас есть убеждение и определенная уверенность в способности поддерживать самый высокий уровень публикаций на страницах журнала, их актуальность и современность.

Как главный редактор журнала выражаю благодарность всем активно работавшим в редколлегии и научно-редакционном совете в истекшем десятилетии и, особенно, заведующей редакцией Е.С. Гуковой.

От имени редколлегии журнала «Проблемы медицинской микологии» выражаю благодарность фирмам «Пфайзер Интернешнл ЭлЭлСи», «Новартис», «Валента фармацевтика» и др. за финансовую поддержку журнала.

Искреннюю признательность выражаю также директору типографии «МГК» В.К. Гуцунаеву, дизайнеру-верстальщику К.М. Биржакову, а также всему коллективу типографии за отзывчивость и неизменно высокое качество полиграфии применительно к нашему журналу.

Литература

3. Сорокин Н.В. Растительные паразиты человека и животных как причины заразных болезней. Для натуралов, врачей, студентов и ветеринаров. С рисунками — СПб, 1882 (в. I), 1883 (в. II), 1884 (в. III), 1886 (в. IV).
7. К 100-летию П.Н. Кашкина. Павел Николаевич Кашкин — как ученый в области медицинской микологии // журнал «Проблемы медицинской микологии» — 2001 — Т.3, №4 — С. 3-4.
10. Приказ МЗ РФ №19 от 28.01.2004 г. о создании коллекции патогенных грибов МЗ РФ в НИИ медицинской микологии им. П.Н. Кашкина
11. Приказ МЗ РФ №20 от 28.01.2004 г. о создании научно-методического центра МЗ РФ в НИИ медицинской микологии им. П.Н. Кашкина
ЭТИОЛОГИЯ ОНИХОМИКОЗА СТОП В Г. САНКТ-ПЕТЕРБУРГЕ И Г. МОСКВЕ. РЕЗУЛЬТАТЫ ПРОСПЕКТИВНОГО ОТКРЫТОГО МНОГОЦЕНТРОВОГО ИССЛЕДОВАНИЯ

Васильева Н.В.1 (директор НИИ)*, Разнатовский К.И. (зав. кафедрой)1, Кotreхова Л.П. (зав. отделением)1, Богомолова Т.С. (зав. лабораторией)1, Пупкова М.А. (аспирант)1, Пинегина О.Н. (аспирант)1, Чилина Г.А. (зав. лабораторией)1, Босак И.А. (врач-лаборант)1, Кубасова Н.А. (врач-дерматовенеролог)1, Белоусова Ж.А. (врач-дерматовенеролог)1, Жуковский Р.О. (врач-дерматовенеролог)1, Гризева Т.М. (врач-дерматовенеролог)4, Владимирова И.С. (врач-дерматовенеролог)8, Цветкова М.Г. (врач-дерматовенеролог)1, Монашкова М.Л. (врач-дерматовенеролог)8, Холонай Н.Н. (врач-дерматовенеролог)7, Стойко А.А. (врач-дерматовенеролог)1, Клюева Т.А. (врач-дерматовенеролог)8, Сажина В.В. (врач-дерматовенеролог)8

1 НИИ медицинской микологии им. П.Н. Кашина ГОУ ДПО СПб МАПО, Санкт-Петербург; 2КВД №7, Москва; 3КВД №15, Москва; 4КВД №29, Москва; 5КВД №10, Санкт-Петербург; 6КВД №11, Санкт-Петербург; 7ГорКВД, Санкт-Петербург; 8КВД №4, Санкт-Петербург, Россия

© Коллектив авторов, 2009

Представлены результаты проспективного многоцентрового исследования этиологии онихомикоза стоп в г. Санкт-Петербурге и г. Москве. Всего исследовано 817 образцов материала с ногтевых пластинок стоп у пациентов из г. Санкт-Петербурга и 353 образца материала от пациентов из г. Москвы. Установлено, что доминирующими возбудителями онихомикоза в г. Санкт-Петербурге и г. Москве были дерматомицеты рода Trichophyton, (78,1% и 84,2% соответственно).

Ключевые слова: дерматомицеты, многоцентровое исследование, онихомикоз стоп, этиология

ETIOLOGY OF FEET ONYCHOMYCOSES IN SAINT PETERSBURG AND MOSCOW. RESULTS OF PROSPECTIVE OPEN MULTICENTRAL STUDY

Васильева Н.В. (director of Institute)*, Разнатовский К.И. (head of chair)1, Кotreхова Л.П. (head of the clinical department)1, Богомолова Т.С. (head of laboratory)1, Пупкова М.А. (postgraduate student)1, Пинегина О.Н. (postgraduate student)1, Чилина Г.А. (head of laboratory)1, Босак И.А. (clinical microbiologist)1, Кубасова Н.А. (dermatovenerologist)1, Белоусова Ж.А. (dermatovenerologist)1, Жуковский Р.О. (dermatovenerologist)1, Гризева Т.М. (dermatovenerologist)4, Владимирова И.С. (dermatovenerologist)8, Цветкова М.Г. (dermatovenerologist)1, Монашкова М.Л. (dermatovenerologist)8, Холонай Н.Н. (dermatovenerologist)7, Стойко А.А. (dermatovenerologist)1, Клюева Т.А. (dermatovenerologist)8, Сажина В.В. (dermatovenerologist)8

1 Kashkin Research Institute of Medical Mycology, SEI APE SPb MAPE, Saint Petersburg; 2Skin-venerologic dispensary №7, Moscow; 3Skin-venerologic dispensary №15, Moscow; 4Skin-venerologic dispensary №29, Moscow; 5Skin-venerologic dispensary №10, Saint Petersburg; 6Skin-venerologic dispensary №11, Saint Petersburg; 7Skin-venerologic dispensary, Saint Petersburg; 8Skin-venerologic dispensary №4, Saint Petersburg, Russia

© Collective of authors, 2009

The results of prospective multicentral study of feet onychomycoses etiology in Saint Petersburg and Moscow are presented. We examined 817 samples of nails from Saint Petersburg’s patients and 353 samples from Moscow’s patients. Predominant etiologic agent of feet onychomycosis was Trichophyton sp. (78,1% — in Saint Petersburg and 84,2% — in Moscow).

Key words: dermatomycetes, etiology, feet onychomycosis, multicentral study
При онихомикозе стоп, как правило, чаще поражаются ногтевые пластинки такими возбудителями, как *Trichophyton rubrum* и *T. mentagrophytes*. Из других грибов имеют значение в развитии онихомикоза стоп представители родов *Candida*, *Fusarium*, *Acremonium*, *Aspergillus*, *Scopulariopsis* и др. Однако их этиологическая роль должна быть подтверждена в каждом конкретном случае онихомикоза, чтобы дифференцировать контаминанты. Это чрезвычайно важно для правильной постановки диагноза и последующего успешного лечения.

В зависимости от пути проникновения гриба различают следующие основные типы поражения ногтевой пластинки: дистально-латеральный, белый поверхностный, проксимальный, проксимальный с паронихией и тотальный.

Известно, что соотношение и распространенность основных возбудителей онихомикоза стоп неодинакова в различных климато-географических зонах [1–4].

На территории Российской Федерации в разные периоды времени были проведены разрозненные клинико-эпидемиологические исследования онихомикоза в отдельных регионах. Как правило, они охватывали небольшое количество пациентов в разных медицинских центрах. Наряду с этим, нередко отсутствовала качественная микологическая диагностика, основанная на современных подходах к интерпретации результатов и оценке этиологической значимости выявленных недерматомицетов.

Прогнозируемые многоцентровые исследования этиологической структуры онихомикоза стоп, охватывающие Федеральные округа с различными климатическими условиями, на территории РФ не проводили.

В 2008 году было начато проспективное многоцентровое исследование этиологии и клиники онихомикозов стоп в 5 Федеральных округах России.

Цель исследования — изучение этиологии, клинических типов и факторов риска развития онихомикоза стоп на территории России.

Для этого было необходимо:
1. изучить спектр возбудителей онихомикоза (дерматомицеты и/или недерматомицеты);
2. изучить взаимосвязь между видами возбудителей и типами поражения ногтевых пластинок при онихомикозе стоп;
3. изучить факторы риска развития онихомикоза стоп.

В исследовании участвовали и продолжают участвовать сотрудники медицинских центров в 5 Федеральных округах. В данной публикации представлены результаты исследования этиологии онихомикозов стоп, полученные в Центральном (г. Москва) и Северо-Западном (г. Санкт-Петербург) округах.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Критериями включения в исследование были:
- амбулаторные больные старше 18 лет;
- клинически заподозренная микотическая инфекция ногтей;
- поражение ногтей, представленное двумя или несколькими симптомами, — изменение окраски ногтя, утолщение, деформация, подногтевой гиперкератоз, онихолизис, паронихия и др. Критериями исключения были:
 - системная и местная противогрибковая терапия, проведенная менее чем за 12 месяцев до начала исследования;
 - местная противогрибковая терапия, проведенная менее чем за 6 месяцев до начала исследования;
 - псориаз.

Получение патологического материала

Во время первого визита пациента к врачу проводили сбор материала (соскоб с ногтевой пластинки) для микологического исследования, с учетом критериев включения и исключения (названных выше). Патологический материал доставляли в лабораторию НИИ медицинской микологии им. П.Н. Кашкина. Перед взятием материала ногтевую пластинку очищали 70% раствором этилового спирта. Взятие материала осуществляли в зависимости от типа поражения ногтя в максимально большом объеме для осуществления микроскопических и культуральных исследований. При наличии у пациентов различных типов поражения ногтей взятие проб с разных ногтей осуществляли отдельно.

Прямая микроскопия

Для микроскопии патологического материала использовали 30% раствор КОН с добавлением флюорхрома — калькофлюора белого, и препарат просматривали в люминесцентном микроскопе. Отмечали наличие или отсутствие характерных грибных структур: гифы гриба, артроспоры, дрожжевые почковые клетки, псевдомицелий (Рис. 1, 2).

Рис. 1. Мицелий и конидии микромицета в соскобе с ногтя.

КОН-препарат 400х. Вид гриба *Scopulariopsis brevicaulis* установлен при культуральном исследовании.
Основными возбудителями онихомикоза были тропогрибы — 69,7% (T. rubrum и Candida spp.), которые составили 78,1% от выделенных культур (таблица 1). Кроме того, выявлены ассоциации T. rubrum и Candida spp. — 2 случая и T. rubrum и Acremonium sp. — 2 случая. Выявлен один случай онихомикоза, обусловленного Trichosporon sp.

Нитчатые грибы-недерматомицеты обнаружены в 10,1% случаев. Среди них: Scopulariopsis brevicaulis — 3,3%, Fusarium sp. — 1,7%, Chaetomium globosum — 1,1%, Aspergillus versicolor — 1,1%, A. fumigatus — 0,6%, A. terreus — 0,6%, Acremonium sp. — 0,6%. Выявлены также ассоциации Fusarium sp. и Candida spp. — 1 случай, Acremonium sp. и Scytalidium hyalinum — 1 случай.

Исследовано 353 образца с ногтей стоп, поступивших из КВД г. Москвы. Грибы обнаружены при микроскопии в 293 случаях, из них положительными при посеве были 76 образцов (26%). Trichophyton spp. были наиболее частыми возбудителями онихомикоза (84,2%). Среди них — T. rubrum (63,1%), T. interdigitale (10,5%), T. tonsurans (10,5%) в монокультуре (таблица 2).

На втором месте по частоте среди возбудителей онихомикоза были нитчатые недерматомицеты — 9,2%, в том числе Scopulariopsis brevicaulis — 2,6%, A. versicolor spp. — 5,2% (A. versicolor, A. flavus, A. candidus), Fusarium sp. — 1,3%. Дрожжи составили 6,6% возбудителей онихомикоза, в том числе Candida spp. — 5,2% (C. parapsilosis, C. guilliermondii) и Geotrichum candidum — 1,3%.

При статистической обработке данных показано, что соотношение дерматомицетов, дрожжей и плесневых грибов среди возбудителей онихомикозов в Северо-Западном (Санкт-Петербург) и Центральном (Москва) округах достоверно не различались; в обоих округах превалировали дерматомицеты (таблица 3). Отметим, что часть присланных образцов патолого-анатомического материала не была включена в исследование, т. к. в ряде случаев были нарушены правила забора и доставки материала.

На основании проведенного исследования (с 14.07.2008 по 29.04.2009) можно констатировать, что как в г. Санкт-Петербурге, так и в г. Москве основные возбудители онихомикоза стоп — дерматомицеты p. Trichophyton, которые составили 78,1% и 84,2%, соответственно. Полученные результаты по соотношению дерматомицетов и недерматомицетов среди возбудителей онихомикоза согласуются с данными аналогичных исследований, проведенных в европейских странах в условиях умеренного климата [1]. Отметим, что в Санкт-Петербурге зарегистрирован случай онихомикоза, обусловленного Scytalidium hyalinum. Заболевания, вызванные этим грибом, обычно встречаются в тропических и субтропических регионах.
Таблица 1

Результаты исследования образцов ногтевых пластин стоп от пациентов с онихомикозом в Санкт-Петербурге

<table>
<thead>
<tr>
<th>Наименование учреждения</th>
<th>Всего образцов</th>
<th>Количество положительных микроскопий (%)</th>
<th>Количество положительных культур (%)*</th>
<th>Выделенные культуры микромицетов (количество)</th>
</tr>
</thead>
<tbody>
<tr>
<td>КВД г. Санкт-Петербурга (КВД №4, КВД №10, КВД №11, ГорКВД)</td>
<td>465</td>
<td>309 (66%)</td>
<td>87 (28%)*</td>
<td>Trichophyton rubrum (64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton tonsurans (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton interdigitale (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton mentagrophytes (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scopulariopsis brevicaulis (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus versicolor (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acremonium sp. (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichosporon sp. (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida albicans (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida.parapsilosis (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida sp. (2)</td>
</tr>
<tr>
<td>НИИ медицинской микологии им. П.Н. Кашкина</td>
<td>352</td>
<td>213 (61%)</td>
<td>91 (42%)*</td>
<td>Trichophyton rubrum (60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton tonsurans (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton interdigitale (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton rubrum + Acremonium sp. (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton rubrum + Candida sp. (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida sp. (9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida.parapsilosis (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scopulariopsis brevicaulis (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fusarium sp.(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fusarium sp. + Candida sp. (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chaetomium globosum (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acremonium sp. + Scytalidium hyalinum (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus terreus (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus versicolor (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus fumigatus (1)</td>
</tr>
<tr>
<td>Санкт-Петербург (в целом)</td>
<td>817</td>
<td>522 (64 %)</td>
<td>178 (32%)*</td>
<td>Trichophyton rubrum (124)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton tonsurans (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton interdigitale (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton mentagrophytes (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scopulariopsis brevicaulis (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fusarium sp.(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fusarium sp. + Candida sp. (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chaetomium globosum (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichosporon sp.(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida albicans (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida.parapsilosis (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida sp. (11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acremonium sp. (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton rubrum + Acremonium sp. (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus terreus (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus versicolor (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus fumigatus (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acremonium sp. + Scytalidium hyalinum (1)</td>
</tr>
</tbody>
</table>

* Кулятурное исследование проводили только для образцов, в которых обнаружены элементы грибов при микроскопии.

Таблица 2

Результаты исследования образцов ногтевых пластин стоп от пациентов с онихомикозом в Москве

<table>
<thead>
<tr>
<th>Наименование учреждения</th>
<th>Всего образцов</th>
<th>Количество положительных микроскопий (%)</th>
<th>Количество положительных культур (%)*</th>
<th>Выделенные культуры микромицетов (количество)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Москва (КВД города)</td>
<td>353</td>
<td>293 (83 %)</td>
<td>76 (26 %)</td>
<td>Trichophyton rubrum (48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichophyton tonsurans (8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus flavus (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus versicolor (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspergillus candidus (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scopulariopsis brevicaulis (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fusarium sp. (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida.parapsilosis (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida guilliermondii (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candida sp. (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geotrichum candidum (1)</td>
</tr>
</tbody>
</table>

* Кулятурное исследование проводили только для образцов, в которых обнаружены элементы грибов при микроскопии.

Таблица 3

Сравнительные данные по этиологии онихомикоза стоп от пациентов в Санкт-Петербурге и Москве

<table>
<thead>
<tr>
<th>Наименование учреждения</th>
<th>Количество выделенных культур возбудителей</th>
<th>Дерматоринги — — (количество)</th>
<th>Нитчатые грибы — — (количество)</th>
<th>Дрожжи — — (количество)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Санкт-Петербург</td>
<td>178</td>
<td>78,1 %</td>
<td>10,1 %</td>
<td>11,8 %</td>
</tr>
<tr>
<td>Москва</td>
<td>76</td>
<td>84,2 %</td>
<td>9,2 %</td>
<td>6,6 %</td>
</tr>
<tr>
<td>ИПОГ</td>
<td>254</td>
<td>81,15 %</td>
<td>9,6 %</td>
<td>9,2 %</td>
</tr>
</tbody>
</table>

По данным научной литературы, в странах с жарким климатом доля дерматорингией среди возбудителей онихомикоза существенно ниже. Так, в Таиланде при исследовании 10 000 пациентов на наличие онихомикоза, дерматоринги составили лишь 42,3% выделенных возбудителей, а нитчатые недерматоринги были причиной в 49,1% случаев, в том числе Scytalidium dimidiatum — в 46%, Fusarium sp. — в 3,1% [3].
Исследователи из Ирана сообщают, что при обследовании 400 больных 71% выделенных возбудителей онихомикоза составили дерматомицеты и 29% — дрожжи, а нитчатые недерматомицеты не обнаружены [4].

В связи с этим, большой интерес представляют данные по этиологии онихомикоза стоп, которые будут получены из Южного, Сибирского и Дальневосточного округов. Вполне вероятно, что этиологическая структура онихомикоза в этих регионах будет отличаться от выявленной в Центральном (г. Москва) и Северо-Западном (г. Санкт-Петербург) округах России.

Учитывая, что подтверждение клинического диагноза онихомикоза при прямой микроскопии образцов ногтевых пластин в г. Санкт-Петербурге и г. Москве было получено только в 64% и 83% случаев, онихомикоз нельзя диагностировать только на основании клинической картины. Полученные нами результаты свидетельствуют о том, что культуральное подтверждение клинического диагноза удается получить в существенно меньшем количестве образцов, чем при микроскопии, как указывают и другие авторы [5]. Учитывая расхождение клинического и микологического диагнозов, следует помнить, что микологическая диагностика сопряжена с рядом существенных сложностей. Особенно это важно при оценке этиопатогенетической роли недерматомицетов в развитии онихомикозов. При этом необходимо следовать известным критериям диагностики, на которые мы и ориентировались в данном исследовании. Только таким образом можно получить статистически достоверные этиологические данные для конкретного региона.

Недавно предложены новые критерии диагностики онихомикоза, обусловленного недерматомицетами, но они, равно как и новые перспективные молекулярно-генетические методы исследования, требуют практического подтверждения [9–13].

Таким образом, в проведенном многоцентровом исследовании установлено, что доминирующими возбудителями онихомикоза стоп в Санкт-Петербурге и Москве в период 2008-2009 гг. были дерматомицеты р. Trichophyton.

Исследование проводится при поддержке представительства фирмы «Новартис Фарма Сервис Инк.» (Швейцария) в г. Москве.

ЛИТЕРАТУРА

Поступила в редакцию журнала 25.05.09
Рецензент: Н.Н.Климко
В статье описан случай диссеминированного споротриксоза у больной M., 77 лет, с хроническим идиопатическим миелофиброзом. Споротриксоз (кожно-лимфатическая форма) развился на фоне приема преднизолона (5-10 мг) в течение 4 лет. Лечение споротриксоза итраконазолом (300 мг/сутки, 16 недель) и флуконазолом (300 мг/сутки, 3 недели) в течение 19 недель было эффективным.

Ключевые слова: итраконазол, споротриксоз, *Sporothrix schenckii*, хронический идиопатический миелофиброз

DISSEMINATED LYMPHOCUTANEOUS SPOROTRIXOSIS IN A PATIENT WITH CHRONIC IDIOPATIC MYELOFIBROSIS

The case of disseminated subcutaneous sporotrixosin caused by *Sporothrix schenckii* in 77-year-old woman with chronic idiopathic myelofibrosis has been described in the article. Sporotrixosin (the lymphocutaneous form) developed on the background of the prednisolon acceptance (5-10 mg) for 4 years. Treatment of sporotrixosin by itraconazole (300 mg/days, 16 weeks) and fluconazole (300 mg/days, 3 weeks) within 19 weeks was effective.

Key words: chronic idiopathic myelofibrosis, disseminated lymphocutaneous sporotrixosis, *Sporothrix schenckii*
трених органов заболевание может приобретать септическое течение [6]. При расположении очагов на лице нередко их диагностируют как проявление красной волчанки, при дальнейшем развитии очаги они становятся похожи на базалиому [7]. У больных с ВИЧ, циррозом печени, алкоголизмом споротрикиозы становятся похожи на базалиому [7]. У больных красной волчанки, при дальнейшем развитии очагов на лице нередко их диагностируют как проявление септического течения [6]. При расположении очагов в слизистых оболочках и внутренних органах, что нередко приводит к летальному исходу [8,9].

Диагноз подтверждают микроскопией патологического материала, культуральным и гистологическим исследованиями. Гистологически при споротрикозе различают три варианта очагов поражения: «споротрикозный», в котором очаг состоит из массы спорыпьеловидных клеток, в центре которого — нейтрофильные или некротические массы, окруженные нейтрофилами. Вокруг очагов — слой плазматических клеток и лимфоцитов. Второй вариант — «губкообразный тип», когда центральная зона сливается с зоной спорыпьеловидных клеток, перемешивается с фибробластами, лимфоцитами, гигантскими мультиядерными клетками типа Анганса. Периферия — слой плазматических клеток. Третий вариант — тип «инородных тел», при котором формируется гранулема типа инородных тел, без пигментного компонента. Тканевая форма возбудителя представляет собой округлые, покачивающиеся клетки 3–5 мкм в диаметре, нерегулярно грамположительные. Определяют сигароидные, округлые формы с несколькими почками, размером 0,7–3,0 мкм, характерные для вторичных очагов инфекции. Астероидные тельца выявляют как при споротрикозе, так и при других инфекциях. Это — овальные или круглые базофильные клетки, 3–5 мкм в диаметре, от которых расходится эозинофильная полоска до 10 мкм в диаметре [10].

МАТЕРИАЛЫ И МЕТОДЫ

Больная М., 77 лет, поступила в микологическую клинику НИИ медицинской микологии им. П.Н.Кашкина СПб МАПО 16.02.2006 года с жалобами на безболезненные узловатые высыпания на верхних конечностях.

Из анамнеза заболевания известно, что в октябре 2005 года на тыльной поверхности правой кисти появился подкожный узел диаметром 0,5–0,6 см, безболезненный, подвижный, плотный на ощупь. Кожа над элементом имела синюшную окраску. Травмы кисти не было, однако летом больная регулярно работала на своем садовом участке. Через месяц после появления первичного элемента на правом предплечье, в области правого локтевого сустава появились идентичные высыпания, располагающиеся линейно по ходу лимфатических сосудов. Пациентка дважды обращалась к дерматологу по месту жительства, диагноз установлен не был. По рекомендации врача наружно применяли мазь с хлорамфениколом, ацикловиром, ихтиолом. Эффект от лечения не был. Заболевание прогрессирова- ло, появились высыпания на левом предплечье. В феврале 2006 года после консультации у гематолога ЛОКБ больная с диагнозом «споротрикоз» была направлена на обследование и лечение в микологическую клинику.

Из анамнеза жизни известно, что больная родилась в Калининградской области, проживает в Ленинградской области. Перенесенные заболевания: острый инфаркт миокарда — в 2000 г., артериальная гипертензия II ст. — в феврале 2002 г. При амбулаторном обследовании по поводу болей в тазобедренных суставах у пациентки были выявлены изменения в клиническом анализе крови. Больная была госпитализирована в гематологическое отделение Ленинградской областной клинической больницы (ЛОКБ). В гемограмме от 11.02.02 г.: Hн — 118 т/л, тр. — 107-10²/л, Л. н. — 10,0-10²/л со сдвигом влево, бласть – 1%, э. – 4%, б. – 3%. УЗИ органов брюшной полости от 12.02.02 г.: спленомегалия +6,0 см по передней аксиллярной линии. Трепанобиопсия от 11.04.02: остеомиелофиброз, вероятно, вторичной природы. Больной был поставлен диагноз: хронический идопатический миелофиброз, хроническая фаза. С марта 2002 г. принимает преднизолон 5-10 мг в сутки. Находится под наблюдением у гематолога ЛОКБ.

При поступлении в НИИ медицинской микологии им. П.Н.Кашкина общее состояние было удовлетворительным. Температура тела — 36,4 °С. Телосложение нормальное, питание пониженное. Кожные покровы и видимые слизистые оболочки блюдные. Язык влажный, обложен желтым налетом по всей поверхности. Пульс — 72 в минуту, симметричный, ритмичный, удовлетворительного наполнения. Границы относительной сердечной тупости расширены влево на 0,5 см. Тонов сердца нет, систолический шум на верхушке, в точке Боткина, на аорте. АД = 120/70 мм рт.ст. На кожных покровах блюдные, с зоной эпителиоидных клеток, перемешивающихся с зоной эпителиоидных клеток и лимфоцитами. Вокруг очагов — слой плазматических клеток.

Пульс — 72 в минуту, симметричный, ритмичный, удовлетворительного наполнения. Границы относительной сердечной тупости расширены влево на 0,5 см. Тонов сердца нет, систолический шум на верхушке, в точке Боткина, на аорте. АД = 120/70 мм рт.ст. На кожных покровах блюдные, с зоной эпителиоидных клеток, перемешивающихся с зоной эпителиоидных клеток и лимфоцитами. Вокруг очагов — слой плазматических клеток.

Пульс — 72 в минуту, симметричный, ритмичный, удовлетворительного наполнения. Границы относительной сердечной тупости расширены влево на 0,5 см. Тонов сердца нет, систолический шум на верхушке, в точке Боткина, на аорте. АД = 120/70 мм рт.ст. На кожных покровах блюдные, с зоной эпителиоидных клеток, перемешивающихся с зоной эпителиоидных клеток и лимфоцитами. Вокруг очагов — слой плазматических клеток.

Пульс — 72 в минуту, симметричный, ритмичный, удовлетворительного наполнения. Границы относительной сердечной тупости расширены влево на 0,5 см. Тонов сердца нет, систолический шум на верхушке, в точке Боткина, на аорте. АД = 120/70 мм рт.ст. На кожных покровах блюдные, с зоной эпителиоидных клеток, перемешивающихся с зоной эпителиоидных клеток и лимфоцитами. Вокруг очагов — слой плазматических клеток.
и правого предплечья по ходу лимфатических сосудов — небольшие узлы синюшной окраски, плотной консистенции, подвижные, диаметром до 1,0 см, покрытые гнойно-геморрагическими корочками, при пальпации которых отмечали флюктуацию (Рис. 1). Пальпация их была безболезненна. В области правого локтевого сустава располагался холодный абсцесс, синюшно-багрового цвета, с выраженной флюктуацией, безболезненный при пальпации.

Рис. 1. Больная М., 77 лет. Кожно-лимфатическая форма споротриксоза, высыпания на правом верхнем предплечье

Результаты обследования при поступлении:
- **Клинический анализ крови** от 16.02.06 г.: Hb – 108 г/л, эр. – 3,8∙10¹²/л, ЦП – 0,85, тр. – 130∙10⁹/л, л. – 14,6∙10⁹/л, п. – 5%, э. – 84%, лимф. – 7%, мон. – 1%, СОЭ – 6 мм/ч.
- **Общий анализ мочи** от 16.02.06 г.: белок – 0, глюказа – 0, лейкоциты – единичные в поле зрения, эпителиальные клетки – единичные в поле зрения, эритроциты – 0, бактерии – 0.
- **ЭКГ** от 16.02.06 г.: Синусовый ритм. Изменения в предсердиях. Гипертрофия левого желудочка.

С целью подтверждения споротриксоза было проведено микроскопическое и культуральное исследование пункциата узлов. При микроскопии при окраске PAS-методом отделяемого из подкожного абсцесса были обнаружены многочисленные PAS-положительные элементы: округлые 5–10 мкм, округлые почкующиеся, "сигаровидной" формы, абортивный мицелий, деструктурированные формы; заключение: обнаруженные тканевые формы схожи с таковыми при споротриксозе (Рис. 2).

Рис. 2. Тканевая форма возбудителя споротриксоза. Многочисленные клетки возбудителя в отделяемом из свища. PAS-реакция. Ув. х1000

Были многократно проведены посевы отделяемого абсцессов, в одном из посевов был получен рост *S. schenckii* (Рис. 3, 4).

Рис. 3. а) Культура *Sporothrix schenckii* на агаре Сабуро. Рост в течение 18 суток при 23 °С. б) Микроскопия культуры. Ув. х1000

Многократные посевы отделяемого подкожных абсцессов на дрожжевые и мицелиальные грибы были отрицательными. При исследовании на бактериобиоту был получен рост *Staphylococcus delphini*.

07.03.06 г. пациентке было выполнено иммунологическое исследование, заключение: лейкоцитоз (24,1·10⁹/л) за счет нейтрофилов, снижена киллерная активность нейтрофилов; лимфопения (0,964·10⁹/л) и, соответственно, снижено абсолютное число всех субпопуляций лимфоцитов; снижена экспрессия на лимфоцитах активационных маркеров (рецепторов к ИЛ–2); снижены уровень IgA, индуцированная продукция ИФН-α (89 пг/мл) и ИФН-γ (111 пг/мл).

По данным УЗИ органов брюшной полости от 16.03.06 г., у пациентки выявляли спленомегалию (размеры селезенки 14,1×6,0 см). Изменений размеров и структуры печени не было.

Для исключения поражения внутренних органов больной было выполнено дополнительное обследование. На рентгенограммах органов грудной полости от 28.02.06 г. и от 05.04.06 г. очаговых и инфильтративных изменений в легких не определяли. На рентгенограмме костей правого и левого локтевого суставов видимых костно-деструктивных изменений не выявили. На основании данных анализа, результатов обследования больной был поставлен основной диагноз: Споротриксоз, кожно-лимфатическая форма.

Сопутствующий диагноз:
Хронический идиопатический миелофиброз, фиброзная стадия. ИБС, стенокардия напряжения II функционального класса. Атеросклероз аорты, коронарных, церебральных артерий. Атеросклеротический и постинфарктный (острый инфаркт миокарда в 2000 г.) кардиосклероз. Артериальная гипертензия II ст. Риск сердечно-сосудистых осложнений IV.

Осложнения фоновых заболеваний:
Анемия, тромбоцитопения тяжелой степени.
С 31 марта 2006 г. пациентке было начато лечение итраконазолом в дозе 300 мг в сутки. Контроль биохимических показателей функции печени, почерк, клинического анализа...
крови, общего анализа мочи осуществляли каждые 10–14 дней. При микроскопии от 12.05.06 г. в содержимом разрывающегося подкожного абсцесса обнаружены единичные PAS-положительные округлые и сигаровидные клетки. Общий курс лечения итраконазолом составил 3 месяца. Лечение пациентки переносилась удовлетворительно, развития нежелательных реакций не отмечали. На фоне проводимой терапии подкожные узлы, абсцессы на верхних конечностях постепенно разрешались, новых высыпаний с апреля не наблюдалось.

Было проведено переливание эритроцитарной массы №4, 1 дозы тромбоцитарной взвеси, суточная доза преднизолона увеличена до 20 мг в сутки. При микроскопии от 12.05.06 г. в содержимом разрывных подкожных абсцессов обнаружены единичные PAS-положительные округлые и сигаровидные клетки. Общее количество узлов увеличено до 20 мг в сутки.

В связи с прогрессированием гематологического заболевания итраконазол был отменен с 03 июля 2006 года. Пациентка была переведена на прием флуконазола (300 мг/сутки). На фоне проводимой антифунгальной терапии подкожные узлы, абсцессы на верхних конечностях постепенно разрешались, новых высыпаний с апреля не наблюдалось. Было проведено переливание эритроцитарной массы №4, 1 дозы тромбоцитарной взвеси, суточная доза преднизолона увеличена до 20 мг в сутки.

Пациентка переносила удовлетворительно, развития нежелательных реакций не отмечали. На фоне проводимой терапии подкожные узлы, абсцессы на верхних конечностях постепенно разрешались, новых высыпаний с апреля не наблюдалось.

Было проведено переливание эритроцитарной массы №4, 1 дозы тромбоцитарной взвеси, суточная доза преднизолона увеличена до 20 мг в сутки. При микроскопии от 12.05.06 г. в содержимом разрывных подкожных абсцессов обнаружены единичные PAS-положительные округлые и сигаровидные клетки. Общее количество узлов увеличено до 20 мг в сутки.

В связи с прогрессированием гематологического заболевания итраконазол был отменен с 03 июля 2006 года. Пациентка была переведена на прием флуконазола (300 мг/сутки). На фоне проводимой антифунгальной терапии подкожные узлы, абсцессы на верхних конечностях постепенно разрешались, новых высыпаний с апреля не наблюдалось.

Было проведено переливание эритроцитарной массы №4, 1 дозы тромбоцитарной взвеси, суточная доза преднизолона увеличена до 20 мг в сутки.

Поступила в редакцию журнала 15.04.09
Рецензент: Ф.А. Зверькова
ЦИТОМОРФОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ЭПИТЕЛИЯ ШЕЙКИ МАТКИ ПРИ ХРОНИЧЕСКОМ РЕЦИДИВИРУЮЩЕМ КАНДИДОЗЕ ГЕНИТАЛИЙ И БАКТЕРИАЛЬНОМ ВАГИНОЗЕ

Жорж О.Н. (врач-гинеколог)*, Мирзабалаева А.К. (профессор кафедры)
Кафедра клинической микологии, аллергологии и иммунологии НИИ медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПб МАПО Росздрава, Санкт-Петербург, Россия
© Жорж О.Н., Мирзабалаева А.К., 2009

В статье представлены данные цитоморфологической характеристики эпителия шейки матки при хроническом рецидивирующем кандидозе гениталий и бактериальном вагинозе. В результате исследования выявлено, что наиболее значимые изменения эпителия шейки матки обнаружены у пациенток с хроническим рецидивирующим кандидозом гениталий и при сочетании грибов Candida spp. и анаэробных бактерий.

Ключевые слова: бактериальный вагиноз, плоскоклеточные интраэпителиальные поражения низкой и высокой степени, хронический рецидивирующий кандидоз гениталий, цервикальный скрининг

The cytomorphological characteristic of cervix uteri epithelium at chronic recurrent candidosis of genitals and bacterial vaginosis have been presented in the article. As a result of research was revealed, that the most significant changes of cervix uteri epithelium were found out in patients with chronic recurrent candidosis of genitals and at a combination of Candida spp. and anaerobe bacteria.

Key words: bacterial vaginosis, cervical screening, chronic recurrent candidosis of genitals, low and high grade squamous intraepithelial lesion

АКТУАЛЬНОСТЬ

Патология шейки матки составляет от 15 до 40% в структуре гинекологических заболеваний, характеризуется разнообразием патологических проявлений и потенциальным риском их злокачественной трансформации. Известно, что рак шейки матки (РШМ) занимает второе место в мире среди злокачественных опухолей репродуктивных органов у женщин и уступает только раку молочной железы. Ежегодно диагностируют около 470 тысяч новых случаев РШМ. В последние годы обозначилась тенденция роста заболеваемости РШМ у женщин в возрастной группе до 29 лет [1-4].

В результате проведенных многочисленных исследований установлено, что важнейшим фактором канцерогенеза шейки матки является инфекция женщин вирусом папилломы человека (ВПЧ) [5-9]. Особую роль в развитии изменений эпителия шейки матки играют и другие генитальные инфекции: хламидийная, микоплазменная, уреаплазменная [10,11]. Вместе с тем, изменения шейки матки у больных хроническим рецидивирующим кандидозом гениталий (ХРКГ) и бактериальным вагинозом (БВ) изучены недостаточно. Проблема лечения и профилактики патологии шейки матки и генитальных инфекций — глобальная и непосредственно связана с жизнью женщины.

Цель — изучить цитоморфологические особенности эпителия шейки матки у женщин с хроническим рецидивирующим кандидозом гениталий и бактериальным вагинозом.

МАТЕРИАЛЫ И МЕТОДЫ

В НИИ медицинской микологии им. П.Н. Кашкина в период с апреля 2006 г. по май 2008 г. было проведено ретроспективное клиническое исследование: определение частоты ХРКГ и БВ у пациенток с патологией шейки матки и оценка цитоморфологических изменений шеечного эпителия при данных заболеваниях.

В исследование включили 200 женщин с патологией шейки матки в возрасте от 17 до 62 лет (мода — 31±8,7). При уточнении анамнестических данных и гинекологической заболеваемости выявили, что средний возраст менархе составил 13±0,2 года. Нарушения менструальной функции (недостаточность лютеиновой фазы, ановуляторный цикл, альгодисменорея, гипо-, гиперменструальный синдром) обнаружили у 21% женщин.
Средний возраст полового дебюта составил 18,1±0,3 года. Более половины женщин (51%) не планировали реализацию репродуктивной функции (не состояли в браке, использовали контрацептивные средства) на данном этапе. Репродуктивная функция была реализована у 46% пациенток, первичное бесплодие отмечали у 3% обследованных.

Воспалительные и дисгормональные заболевания матки и придатков выявили у 15% обследованных женщин: миому матки (интрамуральные, субсерозные формы) и аденомиоз матки — у 10%, хронический двусторонний сальпингоофорит — у 5%. Следует отметить, что 45% пациенток в анамнезе имели инфекции, передаваемые половым путем (ИППП). Наиболее часто в группе наблюдения был выявлен трихомоназ — у 14% женщин, микоплазмоз и уреаплазмоз — у 10% и 5%, соответственно, хламидийная инфекция — у 5%, сочетанная трихомонадно-хламидийная инфекция — у 11%. Все пациентки ранее были пролечены антибактериальными и антипротозойными препаратами; при контрольном обследовании возбудители не обнаружены.

Для диагностики ХРКГ и БВ использовали стандартные диагностические критерии. При микроскопии окрашенных по Граму мазков, взятых из пораженных участков слизистых оболочек вульвы, влагалища, эктоцервикса, выявили дрожжевые покрывающие клетки и/или псевдомицелий, «ключевые клетки» (эпителиальные клетки слизистой оболочки влагалища, покрытые по периферии адгезированными грамотрицательными бактериями) (Рис.1).

При микробиологическом исследовании получили рост Candida spp. (Рис.2), Gardnerella vaginalis, Bacteroides species, Mobiluncus spp. и др. анаэробных бактерий.

Видовую идентификацию возбудителей ХРКГ проводили с использованием тест-системы Auxacolor-2, Fungiscreen-4h (BIO RAD), Api 20C AUX (BIO MERIEUX). Определение чувствительности выделенных культур Candida spp. к флуконазолу и во- рикозану in vitro выполняли диско-диффузионным методом согласно протоколу CLSI M-44A [12-16].

Для постановки диагноза БВ также определяли pH влагалищной жидкости; у обследованных женщин с бактериальным вагинозом pH был выше 4,5. Положительный аминовый тест с 10% раствором калия гидрооксида (присутствие специфического запаха летучих аминов при взаимодействии влагалищных выделений с 10% раствором КОН) выявили у 88% пациенток.

Для максимально раннего обнаружения патологии шейки матки используют цервикальный скрининг. В него входит: цитологическое исследование мазков с эктоцервикса и эндоцервикса (этот метод обеспечивает возможность ранней диагностики предраковых состояний и рака шейки матки), обследование на ВПЧ, расширенную кольпоскопию (осмотр и ревизия слизистой оболочки шейки матки при увеличении с помощью микроскопа и применение эпителломических тестов: 3% уксусной кислоты и 2% раствора Люголя). По показаниям проводят целенаправленную биопсию пораженных участков шейки матки с последующим гистологическим исследованием [2, 17-19].

С целью повышения эффективности цервикального скрининга в связи с новыми данными о роли ВПЧ в генезе РШМ для интерпретации цервикальных мазков внедрена Терминологическая система Бетесда (ТБС), наиболее соответствующая биологии цервикального канцерогенеза и рекомендованная Всемирной организацией здравоохранения (ВОЗ) [20].

Так как плоскоклеточные интрагенитальные поражения более значимы в возникновении РШМ, ТБС рекомендует разделять их на две группы:
• плоскоклеточные интраэпителиальные поражения низкой степени (low grade squamous intraepithelial lesion — LSIL), являющиеся морфологическим отражением транзиторной вирусной инфекции и включающие наличие койлоцитов и другие цитологические признаки инфекции ВПЧ, а также легкую дисплазию (т.е. цервикальную интраэпителиальную неоплазию — CIN I);

• плоскоклеточные интраэпителиальные поражения высокой степени (high grade squamous intraepithelial lesion — HSIL), часто связанные с вирусной персистенцией, высоким риском прогрессии, и включающие в себя умеренную, тяжелую дисплазию (CIN II и CIN III) и карцином in situ [2, 7, 20].

Для выявления ВПЧ использовали метод ПЦР-диагностики с генотипированием. Все типы вируса папилломы человека (ВПЧ) разделяют на две группы: высокого онкогенного риска (выявляют в злокачественных опухолях) и низкого онкогенного риска (выявляют при доброкачественных поражениях шейки матки и кондиломах). К группе высокого онкогенного риска относятся типы вируса 16, 18, 31, 33, 35, 39, 45, 51 и другие [2, 8, 21].

РЕЗУЛЬТАТЫ ОБСЛЕДОВАНИЯ

В ходе проведенного обследования у 131 пациентки (66%) выявили генитальную инфекцию. В зависимости от этиологии инфекционного процесса пациентки были разделены на три группы:

I группа — 35 женщин (18%) с ХРКГ;
II группа — 64 женщины (32%) с БВ;
III группа — 32 женщины (16%) имели сочетание ХРКГ и БВ.

Доминирующий возбудитель кандидаинфекции в I группе — C. albicans (95%) (Рис. 3).

Известно, что при наличии генитальной инфекции скрининг рака шейки матки необходимо проводить после эррадикации возбудителей инфекционного процесса.

ВПЧ высокого онкогенного риска (16, 18, 45, 56 типы) выявлены у 36,7% пациенток I группы, у 34,7% пациенток II группы и у 25% — III группы. ВПЧ умеренного онкогенного риска (31, 33, 52 типы) выявлены у 17%, 12%, 8% больных I, II, III групп соответственно. Таким образом, имеет место высокая частота инфицирования ВПЧ во всех группах больных.

В результате цитологического исследования больных I группы выявили «негативные изменения в отношении интраэпителиального поражения или злокачественности» (метаплазия реактивного характера) у 10 (28,6%) женщин. Эту же форму цитологических изменений эпителия обнаружили у 11 пациенток (18%) во II группе и у 8 (25%) — в III группе. Под реактивными и репаративными изменениями понимают эпителиальные клеточные изменения добро-

качественного происхождения, которые отражают изменения в цервиковагинальной среде в результате гормональных изменений, воспаления, изменения состава вагинальной биоты. Указанные изменения, как правило, носят обратимый характер.

LSIL выявили у каждой пятой женщины (22%) I группы (Рис. 6). Эти же цитоморфологические изменения шеечного эпителия значительно реже обнаруживались у обследованных пациенток II и III групп — у 4 (6,2%) и 3 (9%) женщин соответственно.
Среди всех обследованных HSIL (умеренная и тяжелая дисплазия) обнаружена только у больных с ХРКГ — 6 человек (8,5%) (Рис.7). Тенденцию к увеличению диспластических процессов отмечали у пациенток I группы, что статистически достоверно (р<0.01).

Вторым этапом цервикального скрининга является расширенная кольпоскопия. Измененную кольпоскопическую картину (плоский ацетобелый эпителий, мозаика, пунктация в пределах зоны трансформации), которая может быть связана с реактивными изменениями, выявили у 10 женщин (28,6%) с ХРКГ. Аналогичные изменения реже наблюдали среди пациенток II и III групп в 15% и 20% случаях соответственно (Рис.8,9).

Результаты расширенной кольпоскопии у пациентки с ХРКГ в сочетании с ВВ

Цитограмма выполнена научным сотрудником НИЛ патоморфологии и цитологии НИИ медицинской микологии им. П.Н. Кашкина Лесняк Е.В.
Результаты расширенной кольпоскопии у пациентки с ХРКГ

Рис. 10. Шейка матки после обработки 3% раствором уксусной кислоты: 1 — истинная эрозия, 2 — плотный ацетобелый эпителий, ниже эрозии — грубая мозаика (признак CIN)

На рис. 10 и 11 представлены данные расширенной кольпоскопии у пациентки с ХРКГ. Кольпоскопические изменения: истинная эрозия, участки плотного ацетобелого эпителия, ниже зоны эрозии — грубая мозаика. При обследовании у женщины был обнаружен ВПЧ 16, 18 типы, при цитологическом исследовании — HSIL. Выполнена прицельная биопсия шейки матки и эндоцервикальный кюретаж, при гистологическом исследовании обнаружена плоскоклеточная карцинома in situ.

ОБСУЖДЕНИЕ

В настоящее время профилактика рака шейки матки — это единственный путь сохранить жизнь и здоровье тысячам женщин. Основа профилактики РШМ — это выявление и устранение факторов риска (предупреждение ИППП, отказ от курения, использование барьерных методов контрацепции, вакцинация). Вторичная профилактика — цервикальный скрининг — обследование всех женщин с целью выявления и своевременного лечения предраковых заболеваний шейки матки [7, 21, 22]. Цитологическое исследование является основой скрининга РШМ. Достоинствами этого метода является возможность изучения патологического процесса в динамике, диагностика РШМ на начальной стадии. Цитологический скрининг признан классическим методом и рекомендован ВОЗ для проведения в масштабах национальных программ [3, 17, 18].

Расширенная кольпоскопия представляет собой высокинформативный метод диагностики, включающий осмотр и ревизию состояния слизистой оболочки шейки матки, при гистологическом исследовании обнаружена плоскоклеточная карцинома in situ.

В работе представлены цитоморфологические характеристики эпителия шейки матки у больных с хроническим течением генитальных инфекций, в частности ХРКГ и БВ. Весьма важным представляются онкологические аспекты урогенитальной инфекции. Некоторые авторы предлагают рассматривать генитальную инфекцию как потенциальный фактор дисплазий и рака шейки матки [1, 11, 21]. Работы, посвященные изменению эпителия шейки матки у больных с генитальной инфекцией, немногочисленны. Наиболее
изучены изменения шейки матки при хламидийной инфекции. Имеются сведения о том, что у женщин со злокачественными и предраковыми заболеваниями шейки матки частота выявления ангиотел к хламидям значительно выше, чем у здоровых женщин. Медведев Б.И. и соавторы выявили лейкоплакию и дисплазию шейки матки у 3,8%, эктопию — у 62,8% больных; Рудакова Е.Б. наблюдала лейкоплакию у 15,8%, эктопию — у 66,3% женщин с хламидийной инфекцией [11].

По данным литературы, в структуре патологических изменений шейки матки при ИППП ведущее место (92,2%) занимают воспалительные процессы (экзо — и эндоцервициты), из них преобладают бактериальные эндоцервициты (73,2% случаев). В 30% явлений цервицита, обусловленные Ureaplasma urealiticum и M. genitalium, имеют место на фоне эктопии [1, 10, 21].

Вместе с тем, изменения шейки матки у больных с хламидийной инфекцией и M. urealiticum имеют место на фоне эктопии 30% явления цервицита, обусловленные Ureaplasma urealiticum и M. genitalium, имеют место на фоне эктопии [1, 10, 21].

В последние годы в литературе появились сообщения о наличии эпидемиологической связи анаэробных бактерий и экзогенных факторов воспалительного процесса (вакцин, являются коферментами канцерогенеза и могут быть ответственными за развитие онкологических заболеваний) [8]. Этиологическая роль вируса папилломы человека в развитии рака шейки матки изучена недостаточно, и в настоящее время неизвестно, являются ли у женщины антитела к вирусу папилломы человека фактором риска развития рака шейки матки, или это только следствие дисплазии шейки матки [11].

Таким образом, у больных с хламидийной инфекцией и M. urealiticum имеют место на фоне эктопии 30% явления цервицита, обусловленные Ureaplasma urealiticum и M. genitalium, имеют место на фоне эктопии [1, 10, 21].

В проведенном исследовании частота хронического рецидивирующего кандидоза гениталий, бактериального вагиноза и их сочетание достаточно высокая — 66%. Среди женщин с изменениями в цитологической картине у каждой третьей выявлены «негативные изменения в отношении интраэпителиального поражения или злокачественности». Вместе с тем, по данным цервикального скрининга, отмечается тенденция к увеличению диспластических процессов у пациенток с ХРКГ, в группе которых выявлены плоскоклеточная карцинома in situ (2,8%) и высокодифференцированный плоскоклеточный рак с микровзвянией (2,8%). Полученные данные свидетельствуют о том, что возбудители ХРКГ и БВ существенным образом влияют на цитоморфологические показатели эпителия шейки матки, которые в наибольшей степени выявлены у женщин с этиологическим фактором воспалительного процесса — Candida spp.

Выводы

1. У женщин с цитоморфологическими изменениями шейки матки выявлена высокая частота генитальных инфекций (66%) (хронический рецидивирующий кандидоз гениталий, бактериальный вагиноз и сочетание этих инфекций).

2. Наиболее значимыми интраэпителиальными поражениями являются у женщин с хроническим рецидивирующим кандидозом гениталий плоскоклеточная карцинома в situ (2,8%); высокодифференцированный плоскоклеточный рак с микровзвянией (2,8%).

Литература

15. Киселев В.И., Прилепская В.Н. Кандидоз гениталий у женщин в практике акушера-гинеколога. — СПб., 2008. — 47 с.

Поступила в редакцию журнала 31.03.09
Рецензент: Долго-Сабурова Ю.В.
КЛИНИЧЕСКОЕ ТЕЧЕНИЕ И МЕТОДЫ ЛЕЧЕНИЯ ЗООАНТРОПОНОЗНОЙ ТРИХОФИТИИ У ВЗРОСЛЫХ С ЛОКАЛИЗАЦИЕЙ ПОРАЖЕНИЙ В ЛОБКОВОЙ ОБЛАСТИ

Абидова З.М. (д.м.н.), Нурматов У.Б. (н.с.)*
НИИ Дерматологии и Венерологии МЗ РУз, Ташкент, Узбекистан
© Абидова З.М., Нурматов У.Б., 2009

В статье приведены результаты наблюдения 286 больных с зооантропонозной трихофитией атипичной локализации. Больные были распределены по возрасту, давности и клинической картине заболевания. Из 286 больных мужчин было 168 (58,7%), женщин — 118 (41,3%) в возрасте от 18 до 56 лет. Городские жители составили 81,5%, сельские — 18,5%. Основным возбудителем зооантропонозной трихофитии был Trichophyton verrucosum. Приведены результаты клинической эффективности предлагаемого комплексного лечения с включением иммунокорректора «Метилурацила» и наружного средства «Цитеал», обладающего местным противовоспалительным, противогрибковым и корректирующим рН кожи свойствами. Указанный метод лечения привел к раннему регрессу клинических проявлений, сокращению сроков микотической инфекции и времени пребывания больных в стационаре.

Ключевые слова: зооантропонозная трихофития, клиника, лечение, эпидемиология

THE CLINIC COURSE AND METHODS OF TREATMENT OF ZOOANTHRPONOZE THRICHOPHYTIA IN ADULTS WITH LOCALIZATION OF DEFEATS IN THE PUBIC REGION

Abidova Z.M. (M.D.), Nurmataov U.B. (scientific researcher)
Research Institute of Dermatology and Venerology Ministry of Public Health Republic Uzbekistan, Tashkent
© Abidova Z.M., Nurmataov U.B., 2009

* Контактное лицо Нурматов Улугбек Баходирович
Тел.: +99890 108-88-27

In this article there are results of observation of 286 patients, which have had the non typical localization of zoanthroponose thrichophytia. These patients have been divided by ages and their complaints and their clinical pictures of disease. From these 286 patients there were 168 men (58,7%) and 118 women (41,3%) at age from 18 to 56 years old. 81,5% of patients have been presented by townspeople and about 18,5% — by country people. The main pathogen of zoanthroponose thrichophytia was Trichophyton verrucosum. Positive clinical efficacy of the complex therapy including immunocorrector methyluracilium and an external local anti-inflammatory remedy «cytaial» possessive still antymycotic and corrective skin’s pH action. The named therapy method promoted to early regress of clinical manifestations, period of mycotic infection and patients staying in the clinic.

Key words: clinic, therapy, zoanthroponose thrichophytia
шение состоянии сохраняют жизнеспособность в течение нескольких месяцев. Передача происходит при контакте с инфицированным человеком или животным либо через предметы обихода. В возникновении патологических процессов на коже играет роль изменение рН среды [11, 12]. В современных условиях трихофития в Узбекистане имеет ряд характерных особенностей — на первый взгляд анализируется видовой состав возбудителей. Основным возбудителем являлся фавиформный трихофитон, удельный вес которого составляет 80-85 % [13]. Изменился возрастной состав больных. Так, в последние годы заболеваемость резко выросла, стали встречаться больные старше 15 лет. Появились больные трихофитией с атипичными локализациями очагов поражения, например, в области лобка, половины, ягодиц [15].

Цель нашей работы — изучение распространенности и особенностей клинического течения зооантропонозной трихофитии с атипичной локализацией, в частности — в лобковой области.

МАТЕРИАЛЫ И МЕТОДЫ

Нами были обследованы 286 больных трихофитией, у которых патологический процесс локализовался в лобковой области, обратившихся для обследования и лечения в клинику НИИ дерматологии и венерологии МЗ РУз в период 2002-2007 гг. В работе были использованы клинические методы обследования больных.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Нами устаноано, что 237 (82,9%) пациентов отметили половой контакт как причину возникновения заболевания, а остальные 49 больных (17,1%) причину указать не смогли. Больные зооантропонозной трихофитией с атипичной формой локализации были в возрасте от 15 до 56 лет. Мужчин было 168 (58,7%), женщин — 118 (41,3%). Среди наблюдаемых нами больных преобладали городские жители 233 (81,5%), сельских жителей было 53 (18,5%).

Давность заболевания зооантропонозной трихофитии составила от 3 дней до 9 месяцев. При изучении анамнестических данных исследуемых больных выявили, что 1 больной (0,3%) страдал сердечно-сосудистым заболеванием, 1 (0,3%) — сахарным диабетом, 2 (0,7%) — заболеванием почек, 21 (7,3%) — железодефицитной анемией, 76 (26,6%) — перенесли заболевания урогенитального тракта. Из общего числа женщин 13,5% находились на разных сроках беременности. В 17 (5,9%) случаях был выявлен кишечный лямблиоз. Сопутствующую кожную патологию наблюдали у 12 (4,2%) больных: разноцветный лишай, аллергодерматит, псориаз и нейродермит. По сезонности возникновения зооантропонозной трихофитии 93 (32,5%) больных заражались весной, 63 (22,0%) — летом, 52 (18,2%) — осенью и 78 (27,3%) — зимой.

У 62 (21,8%) больных первые очаги поражения возникли в лобковой области, у 177 (61,9%) — в лобковой области и на гладкой коже (бедра, живота), у 41 (14,2%) — в лобковой области, на гладкой коже (бедра, живота) и на коже половины органов и у 6 (2,1%) — в лобковой области, на гладкой коже (бедра, живота) и на волосистой части головы. Все больные с лобковой трихофитией ждались на умеренный зуд, 227 (79,4%) больных отмечали жжение или легкую болезненность в области поражения.

Диагноз трихофитии лобковой области был подтвержден результатами микологических исследований; при микроскопическом исследовании у всех наблюдался гриб, располагающийся на пораженных волосах по типу ectothrix. При культуральном исследовании основным возбудителем были T. verrucosum (97,9%) и T. mentagrophytes var. gypseum (2,1%). Среди наблюдаемых нами больных у 48 (16,8%) диагностировали поверхностно-пятнистую, у 60 (21,0) — инфильтративную и у 178 (62,2%) инфильтративно-нагноительную формы зооантропонозной трихофитии (Рис. 1).

В зависимости от формы заболевания клиническая картина лобковой трихофитии имеет некоторые особенности. Поверхностно-пятнистая форма трихофитии характеризовалась наличием одного, реже — нескольких очагов поражения. Очаги имели округленную форму, четкую границу, бледно-розовый цвет, с валикообразноприподнятым краем. На поверхности очагов наблюдался мелкопластинчатый шелушения, более выраженные по краевому валюку, папулы, везикулы, серозные корки. Субъективно всех больных беспокоил легкий зуд (Фото №1).
При инфилтративной форме трихофитии в результате слияния пораженных участков образовывался очаг причудливых очертаний, занимавший всю лобковую область. Очаг слегка возвышался над уровнем кожи, имел четкие, валикообразные приподнятые края, инфильтрированную, гиперемированную поверхность. В центре очага отмечались невывраженное шелушение, а также имелось множество мелкопапулезных элементов. У некоторых больных пальпировали паховые лимфатические узлы. Субъективно больных беспокоил зуд, чувство жжения и легкая болезненность (Фото №2).

Нагноительная форма трихофитии лобковой области характеризовалась наличием резко отграниченного очага, возвышающегося над уровнем здоровой кожи, с выраженными островоспалительными явлениями в виде отечности, яркой гиперемии и инфильтрации. На поверхности очага имелись множественные пустулы с обильным гнойным отделяемым и гнойно-геморрагическими корками. Волосы были склеены в пучки. Нагноительная форма лобковой трихофитии у всех больных сопровождалась паховым лимфаденитом. Как правило, общее состояние больных было удовлетворительным (Фото №3).

Нами было показано, что у больных зооантропонозной трихофитией лобковой области обнаруживаются определенные изменения в иммунной системе, выражающиеся дисбалансом клеточного и гуморального звеньев иммунной системы, а также снижением функции неспецифической защиты организма, на фоне нарушения микрофлоры и рН кожи со сдвигом в щелочную сторону, что способствует созданию благоприятных условий для размножения различных микроорганизмов с развитием дисбактериоза и осложнением клинического течения микозного процесса, являющегося основанием для разработки оптимального метода лечения лобковой трихофитии.

В зависимости от проводимого лечения 140 больных зооантропонозной трихофитией лобковой области были разделены на две группы, репрезентативных по клиническим формам.

В первую группу вошли 72 больных, получавших традиционный метод лечения (группа сравнения), включающий назначение противогрибковых препаратов (таблетки гризеофульвина из расчета 16 мг/кг веса в сутки), биогенных стимуляторов, антигистаминных и десенсибилизирующих средств и местно — анилиновых красителей, антимикотических мазей и кремов (микосептин, низорал, микозолон, клотримазол и др.).

Во вторую группу (комплексная терапия) вошли 68 больных, составляющих основную группу, которым на фоне традиционной терапии были назначены в качестве противогрибкового препарата — ламизил и для восстановления нарушений в иммунной системе и неспецифической защиты организма — метилурацил, местно — антимикотическая мазь ламизил и раствор «Цитеаль», обладающий противомикробным действием и нормализующий рН кожи.

Ламизил назначали по 1 таблетке (250 мг) один раз в день в течение 14-28 дней в зависимости от клинической формы заболевания; метилурацил (0,5 г) — по 1 таблетке 3 раза в день в течение 20-25 дней; цитеал — в виде аппликаций 2 раза в день в разведении 1:10 в 0,9% изотоническом растворе до исчезновения островоспалительных явлений, затем подключали наружные противогрибковые средства. Больным лобковой трихофитией лечение проводили...
до полного клинического выздоровления и микологического излечения.

Критериями эффективности проводимой терапии были прекращение кожного зуда, жжения, регресс патологических элементов.

Результаты проводимого лечения и микологическая излечность представлены в таблицах 1 и 2.

Таблица 1.

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Клинические формы лобковой трихофитии</th>
<th>Микологическая негативация</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Поверхностно- пятнистая, n=13</td>
<td>Инфилтративная, n=28</td>
</tr>
<tr>
<td>Прекращение зуда, дни</td>
<td>10,6 ± 0,42</td>
<td>14,3 ± 0,63</td>
</tr>
<tr>
<td>Прекращение жжения, дни</td>
<td>-</td>
<td>12,6 ± 0,53</td>
</tr>
<tr>
<td>Исчезновение гиперемии, дни</td>
<td>12,6 ± 0,33</td>
<td>16,0 ± 0,75</td>
</tr>
<tr>
<td>Рассасывание инфильтратов, дни</td>
<td>-</td>
<td>12,6 ± 0,45</td>
</tr>
<tr>
<td>Пребывание в стационаре, дни</td>
<td>22,6 ± 1,51</td>
<td>22,2 ± 1,51</td>
</tr>
</tbody>
</table>

Таблица 2.

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Клинические формы лобковой трихофитии</th>
<th>Микологическая негативация</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Поверхностно- пятнистая, n=19</td>
<td>Инфилтративная, n=12</td>
</tr>
<tr>
<td>Прекращение зуда, дни</td>
<td>7,6 ± 0,40</td>
<td>10,7 ± 0,59</td>
</tr>
<tr>
<td>Прекращение жжения, дни</td>
<td>9,7 ± 0,48</td>
<td>9,6 ± 0,57</td>
</tr>
<tr>
<td>Исчезновение гиперемии, дни</td>
<td>-</td>
<td>12,4 ± 0,69</td>
</tr>
<tr>
<td>Рассасывание инфильтратов, дни</td>
<td>-</td>
<td>10,1 ± 0,51</td>
</tr>
<tr>
<td>Пребывание в стационаре, дни</td>
<td>19,1 ± 1,65</td>
<td>21,8 ± 2,73</td>
</tr>
</tbody>
</table>

При изучении сроков пребывания больных в стационаре после комплексного метода лечения показано, что больные поверхностно-пятнистой формой трихофитии в клинике, в среднем, находились 19 дней, инфилтративной формой — 21 и инфилтративно-нагноительной формой — 20 дней.

В последнее 30-40 лет зооантропонозную трихофитию с атипичной формой локализации и микологической негативацией при половой контакт. Плотно упоминание и оценка заболеваний, вызванных Trichophyton verrucosum. Локализацией заболевания в лобковой области подтверждается возможность передачи грибковой инфекции при половом контакте.

ЗАКЛЮЧЕНИЕ

В последние 30-40 лет зооантропонозную трихофитию с атипичной формой локализации и микологической негативацией при половой контакт. Плотно упоминание и оценка заболеваний, вызванных Trichophyton verrucosum. Локализацией заболевания в лобковой области подтверждается возможность передачи грибковой инфекции при половом контакте.
ЛИТЕРАТУРА

1. Кухар Е.В., Киян В.С. Разработка различных вариантов ИФА с моноклональными антителами для выявления специфических антител против Trichophyton verrucosum // Ж. Проблемы медицинской микологии.- 2008.- Т.10, №2. — С.59.
2. Буздякин Т.М., Медведев Ю.А., Медведева Е.А. и др. Актуальные проблемы микотических инфекций //Уральский НИИ дерматовенерологии и иммунологии. г. Екатеринбург, Башкирский государственный мед. институт.

Поступила в редакцию журнала 18.03.09
Рецензент: В.Г. Корнишева
Ключевые слова: аллергенопродуцент, Aspergillus fumigatus, селекция,自发 изменчивость.
дим периодический поддерживающий отбор как по морфологическим свойствам, так и по другим инте-
рессующим маркерам. Отбор позволяет поддерживать генетическую однородность популяции, что важно для качества грибных культур [1, 2]. Исследование изменчивости микромицетов по определенному мар-
керу дает возможность получить чистую культуру с центными свойствами стабильных и рентабельных штаммов – продуцентов целевых продуктов, в част-
ности — миокоаллергенов. Для медицинской практи-
ки создание аллергодиагностических препаратов из селекционированных штаммов является значимым.

Как показано ранее, истинная частота микоген-
ной аллергии у больных не может быть установлена, пока нет стандартных препаратов [3, 4].

Ранее нами изучена изменчивость распростра-
нённых представителей родов Aspergillus, Penicil-
lum, Cladosporium, Alternaria, Fusarium, которые являются аллергопродуцентами [5-8]. При этом се-
лекционированы наиболее активные штаммы по ин-
тенсивности прорастания спор и конидий, которые стабильны в ряде генераций по этому маркеру.

Показано также, что полученные из фильтратов культуральных жидкостей аллергенные препараты из этих штаммов обладают высокой специфично-
стью, достаточной активностью и стандартностью [9, 10]. Четкие результаты при обследовании боль-
ных атопическими заболеваниями в клиниках Санкт-
Петербург и России показали явное преимущество использования селекционированных штаммов в аллергодиагностических препаратах [11, 12].

Сегодня в списке, размещенном на сайте www.al-
lergen.org, зарегистрировано 99 аллергенов грибов. Среди них наиболее глубоко изучены штаммы A. fu-
migatus, у которых выявлена 19 аллергенов. Показано значение микогенной сенсибилизации A. fumigatus в патогенезе органов дыхания человека, в том числе аллергического бронхолегочного аспергиллёза, бронхо-
хиальной астмы, аллергического альвеолита [13-19].

В задачу нашего исследования входило изучение естественной изменчивости клонов в популяции ис-
ходного (ИШ) и селекционированных штаммов (СШ) A. fumigatus по двум маркерам: морфологии колоний (МК) и интенсивности прорастания конидий (ПК). Цель эксперимента — в процессе поддерживаю-
щей ступенчатой селекции отобрать клонь с ти-
пичными по МК и активностью ПК для пополнения банка чистых стабильных по ценным свойствам рен-
табельных штаммов – продуцентов аллергенов для возможного использования их в отечественной аллергодиагностике.

МАТЕРИАЛЫ И МЕТОДЫ
Объектами исследования послужили 3 штамма. Их генеалогия: исходный РКГП – 157/2308, выделен-
ный от больного эмпиремой плевры в 1986; селекцио-
нированные — при изучении спонтанной изменчиво-
сти популяций штаммов: №127/2308/32 — в 2001 г.,
№157/2308/32/87 — в 2009 г. в процессе поддержи-
вающей ступенчатой селекции в период длительного хранения с 1992 по 2009 гг. Штаммы входят в банк культур — аллергопродуцентов и хранятся в коллек-
ции грибов НИИ медицинской микологии им П.Н. Кашкина.

Свойства клонов из монопорового рассева по-
пуляций штаммов исследовали с применением генетико-селекционных методов [20]. Естественную изменчивость MK грибов изучали на агаризованной среде Чапека-Докса после выращивания при 28 °С в течение 7 сут. Оценили, в среднем, по 700 колоний каждого штамма.

Спонтанную изменчивость свойства интенсив-
ности ПК исследовали на жидкости Сабуро с 4% глюкозы и добавками органического азота. Грибы инкубировали при 27 °С при постоянном встрахи-
вании пробиорок на шуттель аппарате в течение 12 часов. Из популяции каждого штамма просмотрели, в среднем, по 90 колоний. Количество ПК подсчи-
тывали в процентах к общему числу конидий в 10 полях зрения микроскопа МБИ-15. С целью отбора активных клонов по ПК провели статистическую обработку результатов, используя способ сумм [21].

Результаты и обсуждение
При изучении спонтанной изменчивости свойств MK, СШ и ИШ получены следующие результаты. По-
пуляция как СШ, так и ИШ по макроморфологии представлена двумя типами колоний: типичными — I типа и нетипичными — II. У СШ I тип состоял 74,6%, II — 25,4% (Рис.1). У ИШ процент II типа состоял 37,9%, что в 1,5 раза превышает данные СШ.

Колонии I типа — в диаметре 8 см, войлочная, темно-серовато-зеленого цвета, край слегка звезд-
чатый с широкой полосой белого цвета. Реверсум темно-красно-коричневый (Рис.2а). Микроскопическая картина представлена гладкими конидиями размером 5,4×2,7 мкм. Конидии шаровидные, диаметром 2,5-
3,0 мкм, в массе темно-зеленые, гладкие.

Колонии II типа — в диаметре 6 см, беловато-
сероватого цвета, край плоский, широкий, сильно звездчатый. К центру колонии радиальноскладчатый. Воздушный мицелий — слабый, беловато-
сероватого цвета (Рис.26). Микроскопически наблюдали большей частью деформированный мицелий и орга-
ны размножения, конидии единичные серовато-
беловатого цвета, диаметром 2,5-3,0 мкм.

На основании статистической обработки полу-
ченных результатов дана оценка естественной из-
менчивости клонов в популяции ИШ и СШ по мар-
керу активности ПК по следующим критериям вари-
абельности. Как видно из Рис.3 и таблицы, ИШ 157
имеет большой размах изменчивости от 0 до 100%, модальный класс находился в низкоактивном классовом интервале от 20 до 40%, где частота встречаемости активных клонов составляла 38,7%, средняя арифметическая (х) – 37,2%. При этом у СШ 157/32 размах изменчивости снизился от 0 до 80%, но увеличилась частота встречаемости активных клонов на 9%, и в модальном классе она составляла 47,8%. Средняя арифметическая увеличилась на 20%, что составляло 57,7%.

Рис. 1. Колонии двух морфологических типов в моноспоровом рассеве популяции A. fumigatus, селекционированного штамма 157/32/87 на агаризованной среде Чапека-Докса на 7-е сутки роста при 28 °С (2009 г.), (уменьшено в 1,5 раза)

Рис. 2. Типы колоний A. fumigatus, селекционированного штамма 157/32/87 (точечный посев) на агаризованной среде Чапека-Докса на 7-е сутки роста при 28 °С (2009 г.), (уменьшено в 1,5 раза). а) I тип колоний; б) II тип колоний

Рис. 3. Естественная изменчивость активности прорастания конидий в популяциях исходного и селекционированных штаммов A. fumigatus в различные периоды времени; ось абсцисс – активность прорастания конидий, %; ось ординат – количество вариантов с проросшими конидиями, %

в) селекционированный штамм 157/32/87 – 2009 г.

У СШ 157/32/87, полученном на следующем этапе селекции, размах изменчивости также уменьшился, в сравнении с ИШ 157, но при этом на 2 класс сдвинулся в сторону увеличения активных клонов. Так, размах изменчивости находился в пределах от 20-100%, модальный класс также сдвинулся в сторону высокоактивного интервала от 60 до 80%, и частота встречаемости активных клонов увеличилась на 19,1% (Рис.3). Средняя арифметическая составляла 65,7%, что превысило на 28,5% ИШ (табл.).

Как видно из Рис.3 и таблицы, у ИШ большое количество клонов находилось в низкоактивном классовом интервале от 0 до 40%, а у СШ – 157/32/87 – в высокоактивном – от 60 до 80%. Квадратичное отклонение (σ) в популяции СШ уменьшилось, в сравнении с ИШ, на 26%.

Так как средняя арифметическая у СШ высокая, то клонсы, выходящие за пределы х±2σ, с активностью выше 92,3% — единичны, т.е. частота «плюс»-вариантов составила 1±0,9, а у ИШ частота клонов, превышающих при этом 71,5% — 9±4,2, т.е. наблюдали высокую встречаемость «плюс»-вариантов за счет низкой активности ИШ (табл.)

<table>
<thead>
<tr>
<th>Год</th>
<th>№ штамма</th>
<th>Ряд изменчивости, %</th>
<th>Средняя арифметическая, X%,</th>
<th>Коэффициент изменчивости, CV, %</th>
<th>Квадратичное отклонение, σ²%, Частота вариантов,</th>
<th>Положение, минус</th>
<th>Положение, плюс</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>157</td>
<td>0–100</td>
<td>37,2±2,1</td>
<td>±17,2</td>
<td>46,39</td>
<td>9±4,2</td>
<td>2±2,0</td>
</tr>
<tr>
<td>2001</td>
<td>157/32</td>
<td>0–80</td>
<td>57,7±7,0</td>
<td>±14,8</td>
<td>43,82</td>
<td>2±1,5</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>157/32/87</td>
<td>20–100</td>
<td>65,7±1,3</td>
<td>±13,3</td>
<td>20,24</td>
<td>±1.0</td>
<td>5±2,1</td>
</tr>
</tbody>
</table>

В результате изучения спонтанной изменчивости популяций ИШ и СШ, выявили вариабельность как по МК, так и по интенсивности ПК. При поддерживаемых пересевах и селекции в течение 17 лет отобранны штаммы, типичные по МК и интенсивному ПК. В итоге на третьем этапе селекции отобраны типичные по МК штаммы с интенсивностью ПК до 90,5%. Штаммы с активностью прорастания конидий до 90,5% на 12 часов выращивания в глубинных условиях.

ЗАКЛЮЧЕНИЕ

В итоге исследования спонтанной изменчивости популяций селекционированных штаммов A. fumigatus выявили большой потенциал интенсивности прорастания конидий и селекционированы 4 новых штамма с активностью прорастания конидий от 85 до 90%, превышающие исходный штамм на 48–53%. Селекционированные штаммы стабильны по свойствам морфологии колоний и активности прорастания конидий в ряде генераций и могут быть использованы при создании тест-систем для микоаллергодиагностики.

ЛИТЕРАТУРА

2. Елинов Н.П. Перечные и вторичные метаболиты грибов в связи с некоторыми перспективами развития промышленной микробиологии//Ж. Микробиологической и фитопатологии. - 1990. — Т.14, вып.4.- С.316-373.
12. Журавлева Н.П., Зуева Е.В., Елинов Н.П., Васильева Н.В. и др. Способ выращивания селекционированного штамма

Поступила в редакцию журнала 15.04.09
Рецензент: Н.П. Елинов
К ВОПРОСУ О ДОПУСТИМОМ УРОВНЕ МИКРОМИЦЕТОВ В ВОЗДУХЕ ПОМЕЩЕНИЙ

Желтикова Т.М. (зав.лаб.)*

ГУ НИИ вакцин и сывороток им.И.И.Мечникова РАМН, Москва, Россия
© Желтикова Т.М., 2009

В статье проанализированы данные научной литературы по вопросам предельно допустимых концентраций спор микромицетов в помещениях различного назначения.

Ключевые слова: микромицеты, предельно допустимая концентрация

THRESHOLD OF MOLD SPORES CONCENTRATION IN BUILDINGS

Zheltikova T.M. (chief of laboratory)

Mechnikov Scientific Research Institute of Vaccine and Serum, Moscow, Russia
© Zheltikova T.M., 2009

The article is devoted to the analysis of the scientific literature dates on a question of mold spores concentration threshold of level in buildings.

Key words: mold, threshold concentration

Жители современных городов, особенно дети, значительную часть времени проводят в помещениях. В этой связи особый интерес представляет микрофлора, заселяющая различные помещения и оказы-}

вающая воздействие на здоровье человека. Хорошо известно, что микромицеты принимают участие в патогенезе различных заболеваний человека. Они могут быть возбудителями микозов, участвовать в развитии микогенной аллергии, аллергического бронхолегочного аспергиллеза, аллергического «грибного» риносинусита и т.д. В настоящее время выдвинуты несколько спорных и неоднозначных гипотез о влиянии грибов на организм человека. Так, высказывается предположение о том, что микромицеты могут играть роль неспецифической иммуногенной стимуляции при развитии аллергических заболеваний и усиливать иммунный ответ пациента на другие аллергены, в частности, клаще-}

вые [1]. Идет дискуссия о том, что плесневые грибы могут играть роль суперантигена. Не исключено, что микромицеты обладают способностью связывать антигенсвязывающие рецепторы лимфоцитов не в местах активных центров, а в V-области бета-цепи рецепторов T-лимфоцитов (TCR) [2].

Воздух помещений содержит химические загрязнители (формалин, диоксид азота и т.д.), инфекционные агенты (вирусы, бактерии, грибы) и аллергены (клещевые, эпидермальные, микогенные и т.д.). Каждый компонент воздушного аэрозоля сам по себе может и не оказывать патогенного воздействия на здоровье человека. Однако при совместном существовании в воздухе помещений многие составляющие, даже в очень низких концентрациях, усиливают действие другого компонента на организм человека. Возможно, здесь имеет место эффект синергизма. Пребывание человека длительное время в помеще-}

ниях, где в воздухе находится пыль даже очень низ-}

кая концентрация этих веществ, может способство-

вать развитию сенсибилизации у лиц с генетической предрасположенностью к атопии. При этом экспозиция всех веществ, которые в течение года вдыхает чело-}

век, может не превышать 1–10 мкг/год [3]. Одно из ведущих положений как аэроаллергены помещений занимают микромицеты.

В этой связи встает важный вопрос: существуют ли предельно допустимые концентрации спор грибов в воздухе помещений и каковы их значения, пре-}

вышение которых может привести к развитию за-

болевания у человека? По этому вопросу в научных публикациях имеются фрагментарные и неполные сведения, анализу которых и посвящена эта статья.

В таблицах 1 и 2 представлены, на наш взгляд, формальные данные, позволяющие ранжировать уровень концентрации спор плесневых грибов воз-}

духе различных помещений в Европе и США.

* Контактное лицо: Желтикова Татьяна Михайловна
Тел.: (495) 917-42-55
Таблица 1
Уровень микогенной контаминации воздуха различных помещений для Европы (проект ECA COST 613 19930)

<table>
<thead>
<tr>
<th>Уровень концентрации спор</th>
<th>Жилые помещения</th>
<th>Не индустриальные производственные помещения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Очень низкая</td>
<td>До 50</td>
<td>до 25</td>
</tr>
<tr>
<td>Низкая</td>
<td>50–200</td>
<td>25–100</td>
</tr>
<tr>
<td>Средняя</td>
<td>200–1000</td>
<td>100–500</td>
</tr>
<tr>
<td>Высокая</td>
<td>1000–10000</td>
<td>500–2000</td>
</tr>
<tr>
<td>Очень высокая</td>
<td>более 10000</td>
<td>более 2000</td>
</tr>
</tbody>
</table>

*КОЕ – колониеобразующие единицы

Таблица 2
Уровень микогенной контаминации воздуха для жилых помещений в США (по данным Американского Национального Аллергологического Бюро)

<table>
<thead>
<tr>
<th>Уровень концентрации спор</th>
<th>Численность, КОЕ/м³</th>
<th>Пыль, КОЕ/г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Низкий</td>
<td>до 900</td>
<td>ниже 10000</td>
</tr>
<tr>
<td>Средний</td>
<td>900–2500</td>
<td>104–105</td>
</tr>
<tr>
<td>Высокий</td>
<td>2500–25000</td>
<td>105–106</td>
</tr>
<tr>
<td>Очень высокий</td>
<td>более 25000</td>
<td>более 106</td>
</tr>
</tbody>
</table>

Для интерпретации наших данных по содержанию спор микромицетов в воздухе жилых помещений г. Москвы более удобно использовать Европейскую классификацию [4]. Тогда как для анализа наших данных, касающихся содержания плесневых грибов в домашней пыли, хорошо подходит Американская классификация [5]. Таким образом, для Москвы, по видимому, вполне приемлема как Европейская, так и Американская классификация.

Для воздуха некоторых производственных помещений и медицинских учреждений разработаны нормы предельно допустимых концентраций спор плесневых грибов (табл. 3). В операционных и родильных блоках, а также в хирургических и ожоговых палатах и т.д., как указано в СанПиН 2.1.3.1375-03, плесневых и дрожжевых грибов быть не должно.

В научной литературе имеются немногочисленные сведения о влиянии различной концентрации спор плесневых грибов на развитие аллергических заболеваний для пациентов, имеющих повышенную чувствительность к микогенным аллергенам. Так, по данным Лэйси (Lacey J., 1975) [6], для больных с генетической предрасположенностью к атопии по ротовая концентрация спор микромицетов в воздухе жилища составляет всего 10 КОЕ/м³. Нахождение этих же пациентов в помещении, где численность грибов родов Alternaria и Cladosporium нарастает выше 80–100 и 2800–3000 КОЕ/м³ воздуха, соответственно, может привести к развитию приступов бронхиальной астмы у лиц с генетической предрасположенностью к атопии [9].

Для пациентов, у которых имеется генетический дефект V-области бета-цепи рецепторов T-лимфоцитов (TCR), экспозиция микромицетов в непосредственном контакте, которая может провоцировать развитие хронического риносинусита, значительно ниже и составляет всего 4 колониеобразующие единицы в час [2].

Таким образом, имеющиеся в научной литературе данные о концентрации микромицетов в помещениях различного назначения, регулярный контакт с которыми может привести к развитию заболеваний, противоречивы и единого мнения на этот счет пока не существует. Выработка общих, единых для всех людей нормативов предлагается крайне затруднительной, поскольку механизмы патогенного воздействия грибов на человека различны. Необход имо также принимать во внимание индивидуальную чувствительность пациентов. В этой связи, по видимому, более реально разрабатывать нормативы микогенной контаминации для групп людей, объединенных одной болезнью: пациенты с хроническим риносинуситом, с сенсибилизацией к микогенным аллергенам и т.д.
ЛИТЕРАТУРА

2. Dennis D.P. Chronic sinusitis: defective T-cells responding to superantigens, treated by reduction of fungi in the nose and air // Archives of Environmental Health.- 2003.- Vol. 58, №7.- P.433-441.

Поступила в редакцию журнала 09.02.09
Рецензенты: Г.А.Бабенко, Г.А.Чилина
The results of experimental investigations of the peculiarities associations of S. aureus and E. coli with C. albicans in Candida-colonization of gastrointestinal tract are presented. There is synergic between S. aureus and C. albicans, and antagonism between E. coli with C. albicans have been revealed during Candida-colonization of gastrointestinal tract.

Key words: C. albicans, colonization, gastrointestinal tract

INTRODUCTION

It is generally accepted that the gastrointestinal (GI) tract is the main reservoir of C. albicans, and colonization, as well as local peristaltic micotic invasive processes may be a factor of dissemination of this opportunistic pathogen from the human body to other organs and systems, which is not uncommon to occur in people with immunodeficiency, patients on antibiotic, cytostatic, hormone preparations and so on [1].

Candida-colonization of GI tract in accessible scientific literature sufficiently numerous articles, but many of them are still not fully elucidated [2–4]. It is reasonable to consider one of the main issues of the colonisation of the intestinal tract of Candida spp., as well as dissemination of their various forms of Candida-infection is associated with peculiarities of the association of these fungi with other microorganisms, the ecological changes in the GI tract, and in the organism [5–8].

The aim of the study was to study the peculiarities of the association of S. aureus and E. coli with C. albicans during Candida-colonization of the GI tract in the experimental model.

MATERIALS AND METHODS

Experiments were conducted on 1.5 month-old inbred Balb/c mice (provided to us by the National Research Institute of Medicine, Baku), which were kept in a specially designated room for experimental research in the laboratory for two weeks before the start of the main experiments.

Candida-colonization of the GI tract of mice were performed by orogastric inoculation with 10^8 living cells of C. albicans in 0.1 ml physiological solution, once, using a thin plastic catheter 5 cm long with a special nozzle. The strain of C. albicans used in the study was isolated from the blood of patients with candidemias. The strain was typical and preserved in the collection of living cultures of microorganisms. Before the start of the experiment, it was re-cultivated in 20 ml Sabouraud dextrose broth (SDB) at 37 °C for 18 hours. The suspension of blastospores of C. albicans in SDB was washed three times in a phosphate buffer solution (PBS, pH 7.0), and from the sediment the suspension was obtained containing 10^9 cells C. albicans in 1.0 ml.

The strains of S. aureus and E. coli were isolated from the blood of patients with sepsis.

The Department of Microbiology and Immunology, Azerbaijan Medical University, Baku

© Collective of authors, 2009

* Contact person: Karaev Zakir Omarovich
 Tel.: (0099 412) 495-49-78
микст- Candida -бактериальной инфекции. Ассоциация S. aureus и E. coli с C. albicans изучали, используя трижды отмытые суток культуры бактерий, выращенных в сахарном бульоне, в концентрации 10^8 клеток в 1,0 мл. Также взяли суток культур S. aureus и E. coli вводили перорально в количестве 10^8 клеток в 0,1 мл ФР соответственно по группам животных.

Для того, чтобы избежать возможности непосредственного влияния местной (кишечной) микрофлоры мышей на Candida-колонизацию, в опытных группах животные в течение 5 дней перорально в ФР получали ванкомицин (0,20 мг/мл), ампициллин (0,40 мг/мл) и гентамицин (0,50 мг/мл). Эти дозы антибиотиков эквивалентны их клиническому применению при деконтаминации как анаэробной, так и аэробной микрофлоры кишечника.

В проведенном эксперименте, все животные были подразделены на следующие группы:

I — практически здоровые, интактные мыши (без применения антибиотиков и без инокуляции микроорганизмов), контроль — 1;

II — мыши, которые получали ванкомицин, ампициллин и гентамицин (ВАГ), в течение 5 дней без орогастральной инокуляции микроорганизмов, контроль — 2;

III — мыши с инокуляцией C. albicans, без применения ванкомицина, ампициллина, гентамицина, контроль — 3;

IV — мыши с предварительным применением в течение 5 дней ВАГ, а затем — орогастральной инокуляции 10^8 бластоспор C. albicans в 0,1 мл ФР;

V — мыши с предварительным применением ВАГ, а затем — орогастральной инокуляции 10^8 клеток C. albicans и E. coli, соответственно в 0,1 мл ФР с интервалом между ними в 2 ч;

VI — мыши с предварительным применением ВАГ, затем орогастральной инокуляции 10^8 клеток C. albicans и 10^8 E. coli в 0,1 мл ФР;

VII — мыши с предварительным, в течение 5 дней, применением антибиотиков, а затем — орогастральной инокуляции 10^8 клеток C. albicans и 10^8 клеток S. aureus, соответственно в 0,1 мл ФР с интервалом между ними в 2 ч в 2 часа.

В соответствующие сроки эксперимента убивали по 4–5 мышей из каждой группы, под легким эфирным наркозом. У каждого животного в асептических условиях вскрывали брюшную и грудную полости, извлекали висцеральные органы (сердце, печень, желудок, тонкий и толстый кишечник, а также сердце и легкие) и помещали в отдельную стерилиную посуду на холод.

При извлечении желудка, тонкого и толстого кишечников, основная цель эксперимента была в изучении колонизации C. albicans этих органов. Сердце, легкие, печень, селезенка и почки у животных были взяты нами с целью определения возможной диссеминации C. albicans из гастроинтестинального тракта в другие органы и системы. После очистки их от остатков пищи, из каждого органа была приготовлена фракция с 2 см в помещен в стерильный физиологический раствор, затем был взвешен и гомогенизирован в 1,0 мл ФР, pH — 7,0. Численность колониобразующих единиц (КOE) C. albicans, определяли инокуляцией 0,1 мл разведенных десятикратно гомогенатов на СДА в штамках Петри и инкубировали их при 37 °C в течение 48 час. При этом количество КOE C. albicans было вычислено на 1,0 мл гомогената из соответствующих органов. Чтобы избежать рассмотрения случайного роста немногих колоний, рост >100 КOE на орган нами был оценен как показатель колонизации ГИ тракта C. albicans. Одновременно определяли число КOE C. albicans в содержимом желудка, тонкого и толстого кишечников.

Полученные данные статистически обрабатывали с помощью программной системы Statistic for windows (версия 6.0) с использованием критерия достоверности Стьюдента (t), расчета средней арифметической величины (М) и ошибки средней (m). Различие считали достоверными при р<0,05. Каждый эксперимент был повторен 2–3 раза.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

<table>
<thead>
<tr>
<th>Группа животных</th>
<th>Дни наблюд.</th>
<th>Среднее число (М±m) по10 КОЕ C. albicans в органах</th>
<th>Желудок</th>
<th>Тонкий кишечник</th>
<th>Толстый кишечник</th>
</tr>
</thead>
<tbody>
<tr>
<td>I — интактные, практически здоровые мыши</td>
<td>3</td>
<td>не выявлено</td>
<td>0,3</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>II — мыши, которые получали ванкомицин, ампициллин и гентамицин (ВАГ)</td>
<td>7</td>
<td>не выявлено</td>
<td>0,48</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>III — мыши с инокуляцией C. albicans</td>
<td>11</td>
<td>не выявлено</td>
<td>не выявлено</td>
<td>не выявлено</td>
<td></td>
</tr>
<tr>
<td>IV — мыши с предварительным применением в течение 5 дней ВАГ, а затем — орогастральной инокуляции 10^8 бластоспор C. albicans в 0,1 мл ФР</td>
<td>3</td>
<td>1,63(±0,52)</td>
<td>1,85(±0,92)</td>
<td>1,86(±0,52)</td>
<td></td>
</tr>
<tr>
<td>V — мыши с предварительным применением ВАГ, а затем — орогастральной инокуляции 10^8 клеток C. albicans и 10^8 клеток S. aureus, соответственно, в 0,1 мл ФР с интервалом между ними в 2 ч</td>
<td>5</td>
<td>1,69(±0,45)</td>
<td>1,89(±0,54)</td>
<td>1,91(±0,74)</td>
<td></td>
</tr>
<tr>
<td>VI — мыши с предварительным применением ВАГ, затем орогастральной инокуляции 10^8 клеток C. albicans и 10^8 E. coli, соответственно в 0,1 мл ФР</td>
<td>7</td>
<td>1,71(±0,82)</td>
<td>1,94(±0,94)</td>
<td>1,93(±0,76)</td>
<td></td>
</tr>
<tr>
<td>VII — мыши с предварительным, в течение 5 дней, применением антибиотиков, а затем — орогастральной инокуляции 10^8 клеток C. albicans и 10^8 клеток S. aureus, соответственно в 0,1 мл ФР с интервалом между ними в 2 ч в 2 часа</td>
<td>11</td>
<td>1,70(±0,64)</td>
<td>1,96(±0,82)</td>
<td>2,0(±1,00)</td>
<td></td>
</tr>
<tr>
<td>IV — применение ВАГ в течение 5 дней и инокуляция C. albicans</td>
<td>3</td>
<td>2,74(±0,98)</td>
<td>2,32(±0,54)</td>
<td>2,96(±0,42)</td>
<td></td>
</tr>
<tr>
<td>II — применение ВАГ, без инокуляции</td>
<td>14</td>
<td>2,86(±1,13)</td>
<td>2,78(±0,43)</td>
<td>2,96(±0,48)</td>
<td></td>
</tr>
<tr>
<td>III — инокуляция C. albicans</td>
<td>20</td>
<td>2,84(±0,75)</td>
<td>2,94(±0,52)</td>
<td>3,01(±0,65)</td>
<td></td>
</tr>
<tr>
<td>V — применение ВАГ, инокуляция C. albicans</td>
<td>11</td>
<td>2,61(±0,84)</td>
<td>2,70(±1,2)</td>
<td>2,33(±0,18)</td>
<td></td>
</tr>
<tr>
<td>VI — применение ВАГ, инокуляция C. albicans и S. aureus</td>
<td>14</td>
<td>2,78(±1,2)</td>
<td>2,75(±0,82)</td>
<td>2,08(±0,52)</td>
<td></td>
</tr>
<tr>
<td>VII — применение ВАГ, инокуляция C. albicans и S. aureus</td>
<td>14</td>
<td>2,79(±0,62)</td>
<td>2,77(±0,79)</td>
<td>2,03(±0,72)</td>
<td></td>
</tr>
<tr>
<td>V — применение ВАГ, инокуляция E. coli</td>
<td>20</td>
<td>2,84(±1,14)</td>
<td>2,78(±0,86)</td>
<td>1,96(±1,56)</td>
<td></td>
</tr>
<tr>
<td>VI — применение ВАГ, инокуляция E. coli</td>
<td>20</td>
<td>2,84(±1,14)</td>
<td>2,78(±0,86)</td>
<td>1,96(±1,56)</td>
<td></td>
</tr>
<tr>
<td>VII — применение ВАГ, инокуляция E. coli</td>
<td>20</td>
<td>2,84(±1,14)</td>
<td>2,78(±0,86)</td>
<td>1,96(±1,56)</td>
<td></td>
</tr>
</tbody>
</table>

Как следует из данных, представленных в таблице, у интактных, практически здоровых мышей (кон-
троль-1) в желудке во все сроки наблюдения Candida-колонизацию не выявляли. У них же из кишечного тракта C. albicans высевали в незначительном количестве; в тонком кишечнике ее выявляли лишь в первые сроки (на 3–5 дни) наблюдения, причем в слабой степени и не у всех животных; в толстом кишечнике у этой группы животных число КОЕ C. albicans варьировало в пределах от 1 до 4–5, на 3–5–7 дни исследования, хотя одновременно обнаружили E.coli в достаточном количестве. Вместе с тем, имело место достаточно высокое содержание E.coli у мышей этой группы в толстом кишечнике (рис. 1).

Рис. 1. а) Рост E.coli в толстом кишечнике интактных мышей, I группа; б) Биохимическая идентификация E.coli

У животных второй контрольной группы, которые получали ванкомицин, ампициллин и гентамицин в нетоксических дозах перорально в течение 5 дней, не удалось выявить ни C. albicans, ни E.coli в ГИ тракте в течение двух недель после прекращения введения им антибиотиков. Вместе с тем, у мышей третьей, подвергавшихся орогастральной инокуляции C. albicans без применения ВАГ (контроль-3), отмечали заметно выраженный рост C. albicans на слизистых оболочках ГИ тракта, а также E.coli — в толстом кишечнике. При этом, если численность КОЕ C. albicans в тонком и толстом отделах кишечника у животных была довольно высокая и между их показателями фактически не были выявлены существенные различия, то в желудке у этих же мышей, выраженность Candida-колонизации была заметно слабее (р <0,05).

Результаты исследования Candida-колонизации у опытных групп мышей существенно отличались. Так, у животных IV, получавших антибиотики предварительно в течение 5 дней, последующая, спустя двое суток после прекращения применения ВАГ, орогастральная инокуляция C. albicans сопровождалась выраженной колонизацией ГИ тракта. Одновременно обнаружили диссеминацию C. albicans из интестинального тракта в кровь и почки. Показатели Candida-колонизации у животных этой опытной группы как в желудке, так и в интестинальном тракте, существенно (р <0,05) превышали таковые у мышей третьей группы (контроль-3). Правомерно предположить, что в результате применения ванкомицина (0,20 мг/мл), ампициллина (0,40 мг/мл) и гентамицина (0,50 мг/мл) перорально в течение пятн дней, происходит освобождение у мышей слизистых оболочек ГИ тракта от местной микрофлоры, и последующая инокуляция C. albicans сопровождается усиленной колонизацией. Не исключено, что под воздействием антибиотиков происходят определенные морфофункциональные изменения и в самих слизистых оболочках, что, вероятно, также способствует более усиленной Candida-колонизации ГИ тракта [2–5].

В проведенных нами экспериментах особое значение для нас имело изучение влияния S. aureus и E. coli на колонизацию ГИ тракта C. albicans. У животных, получавших предварительно в течение 5 дней ВАГ и затем инокулированных орогастрально C. albicans, дополнительная орогастральная инокуляция взвеси суточной культуры S. aureus в количестве 10^8 клеток также сопровождалась усиленным Candida-колонизацией ГИ тракта. При этом обращает на себя внимание тот факт, что численность КОЕ C. albicans в желудке у V группы мышей практически не отличалась от таковой у животных VI группы, хотя следует отметить, что в толстом кишечнике у пятой группы мышей выраженность Candida-колонизации проявлялась несколько слабее. Следует также подчеркнуть более усиленную Candida-колонизацию ГИ тракта у животных пятой группы по сравнению с III группой (контроль — 3). У мышей VI группы, у которых изучали особенность Candida-колонизации ГИ тракта при условиях применения E. coli, были выявлены несколько иные данные. Так, пероральная инокуляция суточной взвеси E. coli (10^8 клеток) этой группы мышам, получившим заранее антибиотики в течение 5 дней и инокулированных C. albicans, были выявлены в целом, более низкие показатели Candida-колонизации ГИ тракта по сравнению с таковыми у животных VI и V опытных групп, хотя степень колонизации C. albicans у них была более выраженной, чем в контроле. У животных VII группы особенности изменения Candida-колонизации, в целом, отличались от таковых у других опытных групп (IV, V и VI) мышей, за исключением того, что здесь выраженность Candida-колонизации тонкого кишечника была в меньшей степени, чем в контроле. Вместе с тем, следует отметить диссеминацию C. albicans в почки и кровь у части животных этой группы.
Результаты проведенного нами исследования подтверждают существующее мнение [7, 8] о том, что местная интестинальная микробиота подавляет численность C. albicans в ГИ тракте и снижает их распространение из просвета кишечника в висцеральные органы. Вместе с тем, удаление местной кишечной микробиоты у половозрелых мышей введением им антибиотиков — ванкомицина, ампициллина и гентамицина в терапевтических дозах перорально в течение пяти дней перед орогастральной инокуляцией C. albicans (10^6 кл. в 0,1 мл БФР) усиливает у них Candida-колонизацию в ГИ тракте, способствует диссеминации C. albicans в висцеральные органы. S. aureus, введенный животным, получавшим антибиотики в течение пяти дней перед инокуляцией C. albicans, несколько усиливает колонизацию грибами ГИ тракта, в то же время E. coli — уменьшает степень колонизации C. albicans. Таким образом, находит свое подтверждение мнение о том, что S. aureus оказывает синергическое действие, а E. coli, наоборот, антагонистическое действие на колонизацию ГИ тракта C. albicans.

Рис. 2. Кандидоз-колонизация кишечного тракта у мышей:

а) орогастральная инокуляция C. albicans, III группа;

в) применение антибиотиков + инокуляция C. albicans, IV группа;

с) применение антибиотиков + инокуляция C. albicans и S. aureus, V группа;

д) применение антибиотиков + инокуляция C. albicans и E. coli, VI группа;

е) применение антибиотиков + инокуляция C. albicans, S. aureus и E. coli, VII группа;

ЛИТЕРАТУРА

1. Караев З.О., Лебедева Т.Н. Патогенез кандидоза и аллергии к грибам рода Candida.- Изд. Тебиб, 2007.- 215 с.

Поступила в редакцию журнала 20.04.09
Рецензент: Г.А.Бабенко
СПРЕЙ «ЛАМИЗИЛ»® В ЛЕЧЕНИИ МИКОЗА СТОП

Абидова З.М.
Научно-исследовательский институт дерматологии и венерологии МЗ РУз, Ташкент

SPRAY «LAMIZIL»® IN THE TREATMENT OF FEET MYCOSIS

Abidova Z.M.
Research Institute of Dermatology and Venerology of PhRUz, Uzbekistan, Tashkent

Микоз стоп относит к распространенным инфекционным заболеваниям кожи. Инфицирование человека, как правило, осуществляется спорами грибов, которые в большом количестве находятся и в течение долгого времени сохраняются в почве, в предметах личной гигиены и обихода (одежде, постельном белье, обуви и т.д.). При наличии благоприятных условий (высокая влажность, гипергидроз, плоскостопие, нарушение целостности кожи за счет механических травм, несоблюдение правил личной гигиены) развивается микотический процесс. Возникновению грибковых заболеваний способствуют также и эндогенные факторы, такие как иммунодепрессия, хронические инфекционные заболевания (туберкулез), эндокринопатии, гиповитаминозы, алкоголизм, наркомания, неврозы и др.

Несмотря на наличие широкого арсенала наружных противогрибковых средств, лечение микоза стоп не всегда приводит к успеху.

Цель настоящего исследования — изучение клинической эффективности и безопасности 1% спрея «Ламизил»® при лечении микоза стоп.

Объекты и методы. Под наблюдением находились 30 больных микозами стоп: 18 мужчин и 12 женщин. Средний возраст — 35 лет.

Больных по формам заболевания распределяли следующим образом: 19 — с рубромикозом стоп, 11 — с эпидермофитией стоп; 12 из них — с интертригинозной формой, 10 — со сквамозной и 8 — с дистигидротической формой заболевания. У 4 больных с дистигидротической формой микоза стоп процесс был осложнен вторичной пиококковой инфекцией, а у 5 — микоз стоп сопровождался аллергическими высыпаниями.

Диагноз устанавливали на основании клинической картины заболевания, бактериоскопических и культуральных исследований. При посеве патологического материала со стоп у 16 человек выделили культуру Trichophyton rubrum, у 5 — T. mentagrophytes var. interdigitale.

1% спрей «Ламизил»® распыляли 2 раза в сутки (утром и вечером) до увлажнения на пораженные участки кожи с захватом вокруг здоровой кожи. Продолжительность лечения зависела от эффективности и переносимости препарата и составляла от 7-10 дней до 2-3 недель.

Спрей «Ламизил»® является противогрибковым препаратом широкого спектра действия для наружного применения. Производителем является «Новартис фарма швайц АГ», Швейцария. Выпускается в форме 1% спрея для наружного применения по 15 мл или по 30 мл во флаконе.

Больные с остропротекающей, экссудативной и осложненной формами микоза стоп получали неспецифическую гипосенсибилизирующую терапию. Оценку клинической эффективности проводимого лечения проводили на основании клинических, микроскопических и микробиологических данных и субъективной оценки препарата до и после лечения в динамике.

При применении 1% спрея «Ламизил»® через 3-4 дня исчезали зуд и жжение, уменьшалась краснота. В сроки от 10 до 2-3 недель очаги микоза разрешались: проходили признаки воспаления, покраснение, отек, отмечали эпителизацию эрозий и трещин, уменьшилось шелушение. Клинического излечения удалось достичь у 94,8% больных, а элиминацию грибов-возбудителей — у 92% пациентов. Для профилактики рецидива больным рекомендовано в течение 1-2 месяцев применять 1% спрей «Ламизил»® 2 раза в неделю в межпальцевые складки стоп.

Переносимость препарата была хорошая, побочных и местно раздражающих эффектов не наблюдалось.

Таким образом, противогрибковый препарат «Ламизил»® в виде 1% спрея значительно расширяет возможности лечения грибковых поражений стоп, так как обеспечивает высокую эффективность даже осложненных клинических форм микоза стоп. Кроме того, препарат может быть с успехом применен для профилактики заболевания.
Цель – изучить противогрибковую эффективность «Тербизила»® при онихомикозе у больных сахарным диабетом (СД).

Объекты и методы. Под наблюдением находились 60 больных онихомикозом, страдающих сопутствующим СД. Больным выполняли микроскопическое и культуральное исследование на грибы по общепринятым методам в динамике лечения.

Среди больных мужчины составили 48 (80%) человек, женщины – 12 (20%). Возраст больных варьировал от 30 до 68 лет, давность заболевания – от 1 года до 25 лет. Сочетанное поражение кожи и ногтей наблюдали у 38 больных, изолированный онихомикоз – у 22. Поражение ногтевых пластинок по гипертрофическому типу выявили у 46 пациентов (77%), по атрофическому – у 14 (23%). Инсулинзависимым СД страдали 24 больных, инсулиннезависимым – 36. Компенсированная стадия СД была у 15 больных, субкомпенсированная – у 21, декомпенсированная – у 24. Диагноз онихомикоза подтверждали микроскопическим обнаружением грибов в патологическом материале (кожи, ногтей). В культуре получен рост грибов Trychophyton rubrum в 56% случаев, из них в 2,5% случаев наблюдался одновременный рост T. rubrum и Candida sp.

Больным назначили комплексную терапию с включением системного антимикотика «Тербизил»® (Гедеон Рихтер) – по 250 мг один раз в день, иммунокорректора иммун-5 — по 2 капсулы два раза в день, а также необходимых сахароснижающих препаратов.

Результаты. После 3-недельного применения «Тербизила»® клинико-микологическое выздоровление у больных с поражением кожи стоп наступило у 82,4%, а через 4 недели эффективность лечения повысилась до 98,8%. У 89% больных онихомикозом полное излечение наступило через 3 месяца терапии «Тербизилом»®, а к концу 6 месяца — количество излечившихся пациентов достигло 94%.

Таким образом, препарат «Тербизил»® оказал высокую противогрибковую эффективность при лечении онихомикозов у больных сахарным диабетом.

Объекты и методы. Под наблюдением находилось 67 человек с различными формами микоза стоп в возрасте от 10 до 50 лет; применительно к ним было проведено микробиологическое исследование кишечника.

У этих больных в кишечнике обнаружили достоверно выраженные дисбиотические изменения в количественных и качественных показателях. Количественные параметры изменяли свое соотношение в противоположную сторону, т.e. факультативная группа микробов превалировала над анаэробами. Общее количество анаэробов составило 8,15±0,31 KOE/t при норме — 10,30±0,25 KOE/t, в то же время факультативная группа равна 8,30±0,41 KOE/t при норме — 6,31±0,30 KOE/t.

Кроме того, в кишечнике изменяются не только общие показатели, но и количественные параметры для других видов микробов. Наиболее выраженный дефицит приходится на бифидобактерии — 6,47±0,20, количество которых снижалось более чем на 3 порядка; достоверно было снижено и количество лактобактерий, составивших 5,85±0,19 KOE/t при норме — 7,47±0,52 KOE/t, и только количество пептострептококков существенно возрастало. В факультативной группе микробов наиболее значительные сдвиги в сторону увеличения отмечали у лактозонегативных штаммов эшерихий и Candida spp. Однако настораживает то, что в кишечнике у этих больных довольно значительно возрастало количество патогенных кокков, таких как золотистый стафилококк и стрептококки группы А, обладающих широким набором ферментов патогенности.

Выявленные нарушения в микробиоте кишечника у больных микозом стоп послужили основой для назначения, наряду с традиционной терапией (десенсибилизирующей, антигистаминной, витаминотерапией), эубиотика бифидумбактерина-L, который является препаратом отечественного производства, выпускается МП ООО «Ормбиопрепарат» (Институт микробиологии АН РУз) и состоит из штаммов, полученных из кишечника здорового ребенка местной популяции. Бифидумбактерин-L применяли по 5 доз 3 раза в день в течение 20 дней.

Результаты. После лечения выявили существенные позитивные сдвиги в микробиоте кишечника. Так, общее количество анаэробов достоверно выросло до 9,80±0,51

«ТЕРБИЗИЛА»® В ТЕРАПИИ ОНИХОМИКОЗОВ У БОЛЬНЫХ САХАРНЫМ ДИАБЕТОМ
Абидова З.М., Абдурахманова Н.А.
Научно-исследовательский институт дерматологии и венерологии МЗ РУз, Узбекистан, Ташкент

«TERBIZIL»® IN ONICHOMYCOSES THERAPY IN PATIENTS WITH DIABETES MELLITUS
Abidova Z.M., Abdurakhmanova N.A.
Institute of Dermatology and Venerology of PhRUz, Uzbekistan, Tashkent

«БИФИДУМБАКТЕРИН-Л В ТЕРАПИИ БОЛЬНЫХ МИКОЗОМ СТОП
Абидова З.М., Икрамова Н.Д.
Научно-исследовательский институт дерматологии и венерологии МЗ РУз, Ташкент

BIFIDUMBACTERIN-L IN THE THERAPY OF PATIENTS WITH FEET MYCOsis
Abidova Z.M., Ikramova N.D.
Research Institute of Dermatology and Venerology of PhRUz, Uzbekistan, Tashkent
КОЕ/г (Р<0,001). В аспорогенно-анаэробной группе микро-
бов наблюдали достоверное повышение бифидобактерий – до 8,90±0,47 КОЕ/г (Р<0,001). Количество лактозопози-
тивных штаммов повысилось и составило 5,10±0,41 КОЕ/г,
а лактозонегативных штаммов – достоверно уменьшился
до 1,30±0,11 КОЕ/г (Р<0,001). Особенно важна элиминация
гемолитических штаммов эшерихий.

Положительные сдвиги произошли и во всей изучае-
мой кокковой биоте, особенно важно было исчезновение
патогенных штаммов стрептококков и достоверное умень-
шение патогенных штаммов стафилококков до 1,00±0,09
КОЕ/г (Р<0,001). Нельзя не отметить существенное досто-
верное снижение количества клеток
Candida spp. и протея.

Таким образом, при микробиологических исследовани-
ях кишечника у больных микозом стоп, получавших, наряду
с традиционной терапией, эубиотик бифидумбактерин-L,
с высокой степенью достоверности показана его высокая
eффективность в нормализации дисбиоза кишечника, что
будет вполне оправданно рекомендовать его для лечения
больных с данной патологией.

«ТЕКНАЗОЛ»® (ИТРАКОНАЗОЛ)
В КОМПЛЕКСНОЙ ТЕРАПИИ
ОНИХОМИКОЗОВ

Абидова З.М., Исмаилова Г.А.
Научно-исследовательский институт дерматологии и венерологии МЗ
РУз, Узбекистан, Ташкент

Цель исследования — изучение эффективности и пере-
носимости пульс-терапии онихомикозов препаратом тек-
назол.

Объекты и методы. Под наблюдением находились 75
мужчин и 38 женщин в возрасте от 30 до 68 лет. Длитель-
ность заболевания у 81 (72%) пациентов превышала 15
лет. 43% больных, включенных в исследования, имели со-
путствующие заболевания сердечно-сосудистой, нервной,
эндокринной (сахарный диабет) и мочеполовой систем. К
началу лечения пациенты с сопутствующими заболевания-
ми находились в стадии ремиссии. Изолированный онихо-
микоз наблюдали у 25 (22%) больных, сочетанное пораже-
ние кожи и ногтей стоп — у 88 (78%). Дистальную форму
онихомикоза выявили у 46 (40,7%) пациентов, дистально-
латеральную — у 39 (34,5%), тотальное поражение ногтевых
пластинок — у 28 (25,8%). Диагноз подтверждали микробиоло-
гическим обнаружением гриба в пораженных ногтях.
При посеве на среду Сабуро в 57% случаев был получен
рост гриба Trychophyton rubrum.

Все больные получали лечение Текназолом (итрако-
нал — NOBEL FARMSANOAT- Узбекистан) в течение 3
месяцев методом пульс-терапии. Одновременно больным
назначали антигрибковые препараты, десенситизирующие и
антигистаминные средства, наружно – 3% раствор йода,
фунгицидные кремы и лаки. Лечение текназолом завершили после отрастания
клинически здоровых ногтевых пластинок на ¾ длины и
отсутствия элементов возбудителя при микроскопическом
исследовании.

Результаты. Клинико-микологическое выздоровле-
ние наступило у 92,4% больных онихомикозом стоп через
3 месяца лечения текназолом. Самочувствие, состояние
больных в течение всего времени наблюдения оставалось
удовлетворительными. Во время лечения текназолом обо-
стрения сопутствующих соматических заболеваний не за-
регистрировали; не отмечали аллергических реакций или
побочного эффекта от применения текназола. При дис-
пансерном наблюдении, осуществляемом в течение 6 ме-
сяцев после окончания лечения, рецидивов заболевания не
выявили.

Таким образом, высокая эффективность, отсутствие
осложнений и побочных явлений, экономическая выгода
(сравнительная дешевизна) Текназол позволяет рекомен-
довать его как препарат выбора при системной противо-
грибковой терапии больных ойномикозом.

ОПРЕДЕЛЕНИЕ НЕКОТОРЫХ
ГЕНОВ ГРИБОВ РОДА CANDIDA U
ПАЦИЕНТОВ С НЕСПЕЦИФИЧЕСКИМ
ЯЗВЕННЫМ КОЛИТОМ

Авалуева Е.Б., Барышникова Н.В., Шевяков М.А.,
Суворов А.Н.
1СПб ГМА им И.И.Мечникова; 2НИИ медицинской микологии им.
П.Н.Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

Цель исследования — определение генов, кодирую-
щих факторы адгезии и инвазии Candida albicans в био-
птатах антрального отдела желудка, у пациентов с неспец-
ифическим язвенным колитом, длительно получающих
поддерживающую терапию глюкокортикостероидными
гормонами.

Материалы и методы. В исследование включено 18
пациентов с неспецифическим язвенным колитом (НЯК).
Больные были подразделены на две группы: 1 группа —
пациенты, получающие преднизолон в дозе 5-10 мг как
минимум 2 месяца до исследования и препараты 5-ами-
носалициловой кислоты (5-АСК); 2 группа — пациенты,
Кантидозный дисбиоз кишечника у пациентов с неспецифическим язвенным колитом

Авалуева Е.Б., Нилова Е.А., Шевяков М.А., Ситкин С.И., Петров Л.Н.

СПб ГМА им И.И. Мечникова; НИИ медицинской микологии им. П.Н. Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

Цель исследования — оценить состояние микробоценоза кишечника и возможности коррекции полученных изменений с помощью пробиотического препарата «Витафлор» у больных с неспецифическим язвенным колитом.

Материал и методы. Под наблюдением находились 15 человек с неспецифическим язвенным колитом (НЯК) в фазе ремиссии, получавшие поддерживающую терапию преднизолоном более 30 дней в дозе от 5 до 15 мг в сутки, в зависимости от тяжести течения заболевания. Всем больным проводили анализ кала на дисбиюс с использованием анаэробной техники и специальных питательных сред. При выявлении Candida spp. в посевах фекалий выполняли их типирование с помощью селективных хромогенных сред, определяли виды: Candida albicans, C. glabrata, C. tropicalis, C. krusei. Пациентам дополнительно назначали курс лечения пробиотиком «Витафлор» в виде кишечно-називорствимых капсул — по одной капсуле 2 раза в сутки в течение 15 дней, затем повторяли микробиологический анализ кала.

Результаты. У всех пациентов (100%), получавших преднизолон, при микроbióмологическом исследовании кала выявили кандидозный дисбизбос толстого кишечника — представительство Candida spp., в среднем, 6,89 lgKOE/g (референтные значения — не более 3 lgKOE/g). Также у всех больных наблюдалось снижение количества лактобактерий, увеличение представительства условно-патогенной микробиоты (ассоциации условно-патогенной микробиоты 2-х и 3-х видов, преобладающие штаммы Enterobacter spp.). Candida albicans выявили у 20% пациентов, C. tropicalis — у 47%, C. krusei — у 33%.

После лечения отмечали улучшение микробного пейзажа у всех пациентов. У 53% обследуемых лиц уменьшилось количество Candida spp.(среднее значение — 5,1 lgKOE/g). У остальных 47% пациентов в кале грибов не обнаружили. При типировании преобладали Candida spp. — у 50% пациентов, из тех, у кого их выявляли, Candida tropicalis — у 25%, C. krusei — у 25%. У всех пациентов возросло количество лактобактерий и уменьшилось количество определяемых условно-патогенных микроорганизмов (выявляли только у 47% пациентов).

Выводы. У больных НЯК в фазе ремиссии, получавших преднизолон, доминирует кандидозный дисбизбос кишечника — представительство Candida spp., что способствует увеличению представительства условно-патогенной микробиоты. Пробиотический препарат оказывает угнетающее действие на рост Candida spp. и другой условно-патогенной микробиоты, способствуют увеличению представительства лактобактерий.
ДИФФЕРЕНЦИАЛЬНАЯ ДИАГНОСТИКА КАНДИДОЗА ПИЩЕВОДА ПРИ ЭНДОСКОПИЧЕСКОМ ИССЛЕДОВАНИИ
Авдеенко Ю.Л., Шевяков М.А.
НИИ медицинской микологии им. П.Н. Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

Дифференциальную диагностику кандидоза пищевода при эндоскопическом исследовании традиционно проводят с рефлюксным эзофагитом и инфекционными эзофагитами другой этиологии, в том числе папилломавирусным.

Приемному собственное наблюдение. У пациента М, 48 лет, при плановом эндоскопическом исследовании по поводу гастрита выявили фибринозный эзофагит. Пациент не предъявлял жалоб, характерных для эзофагита. С диагнозом "кандидоз пищевода" пациент был направлен в микологическую клинику НИИ медицинской микологии СПб МАПО.

При эндоскопическом исследовании в микологической клинике: пищевод проходим, просвет округлый, перистальтика прослеживается, слизистая оболочка розовая, тусклая. В верхней и средней трети — с обширными, плоскими, белесыми лентовидными фиксированными наложениями в виде псевдомембран, протяженностью до 10 см, преимущественно по складкам. При пальпации инструментом — наложения плотноватые, снимаются щипцами без образования эрозий. Слизистая оболочка не ранимая. Кардия смыкается.

Заключение: псевдомембранозный (кандидозный?) фибринозный эзофагит. Хронический поверхностный гастрит, субремиссия.

Гистологическое исследование биоптата слизистой оболочки пищевода: утолщение пласта многослойного плоского эпителия с некрозом поверхностных отделов, наличием койлоцитоза, свидетельствующего о вирусном поражении многослойного плоского эпителия пищевода. Большая часть клеток шиповатого слоя находилась в состоянии выраженной баллонной дистрофии и некроза с разрушением клеточных мембран и формированием небольших кистозных полостей, заполненных воспалительным экссудатом, по типу микробицессов, содержащих большое количество нейтрофильных гранулоцитов. Элементов грибов не определяли.

При микроскопии мазков-отпечатков слизистой оболочки пищевода элементов грибов не обнаружили. При посеве биоптата роста грибов не выявили.

На основании полученных лабораторных данных диагноз «кандидоз пищевода» был отвергнут. Заподозрена папилломавирусная этиология эзофагита, однако пациент не получал противовирусной терапии. При контрольном эндоскопическом исследовании через 2 недели мы наблюдали полное исчезновение фибринозных наложений и отсутствие других признаков эзофагита.

Выводы: при эндоскопическом исследовании кандидоз пищевода следует дифференцировать с папилломавирусным поражением. В ряде случаев папилломавирусный эзофагит не требует лечения и излечивается спонтанно.

ЦИТОКИНОВЫЙ ПРОФИЛЬ В КИШЕЧНИКЕ ПРИ АССОЦИАЦИИ ВИРУСОВ, БАКТЕРИЙ И CANDIDA SP.
Алеушкина А.В.
ФГУН Ростов НИИ микробиологии и паразитологии, г. Ростов-на-Дону, Россия

Цель — оценка изменений содержания провоспалительных цитокинов в кишечнике людей на фоне одновременно выявленных в больших количествах вирусов, бактерий и Candida spp.

Результаты. У пациентов с положительными пробами ротавирусов чаще выявляли субкомпенсированные и декомпенсированные варианты дисбюзоза кишечника. При обнаружении ротавирусов одновременно с Candida spp. в 2-, 3- и 4-компонентных ассоциациях с бактериями наблюдалось достоверное увеличение в 8,7-10 раз содержания ИЛ-1 и в 1,3-2,5 раз — ИЛ-6. Содержание ИНФ-γ в тех же пробах было в 65,8-74,8 раз выше, чем в контрольной группе.

Увеличение содержания ИНФ-γ традиционно можно связать с появлением ротавирусов. Изменение уровня...
ИА-1 косвенно свидетельствует о повышенном содержании продуктов жизнедеятельности бактерий и стимуляции Т-клеточного иммунитета. ИА-6 ответственен, в том числе, за аллергические перестройки иммунной защиты, в частности, усугубляет выработку иммуноглобулинов класса Е, что актуально при кандидозах, и подавляет синтез ИНФ-у. Таким образом, цитокиновый профиль у людей с дисбиозами кишечника свидетельствует об изменениях иммунной защиты на местном уровне, зависящих от разнообразия связей представителей микробного пейзажа в обследуемом эпитопе.

МОНИТОРИНГ КОЛОНИЗАЦИИ CANDIDA SPP. НОВОРОЖДЕННЫХ В ОТДЕЛЕНИИ РЕАНИМАЦИИ И ИНТЕНСИВНОЙ ТЕРАПИИ

Анкирская А.С., Миронова Т.Г., Муравьева В.В.
ФГУ «Научный Центр акушерства, гинекологии и перинатологии им. академика В.И.Кулакова», Москва, Россия

Цель исследования — своевременное выявление патологической колонизации грибами новорожденных в отделении реанимации и интенсивной терапии (ОРИТН).

Выводы. Профилактика флуконазолом должна быть оптимизирована в отношении курсовых и разовых доз. В комплексе с микробиологическим мониторингом в режиме non stop это позволяет оперативно решать вопрос о целесообразности целенаправленной антимикотической терапии и значительно снизить риск развития инвазивных форм грибковых инфекций у новорожденных.

THE EXPERIENCE OF TREATMENT OF PATIENTS WITH TINEA CRURIS

Astashina S. M.
Regional Skin-Venereal Dispensary, Vladimir, Russia

За 6 месяцев 2008 года было проанализировано 112 случаев пахового дерматомикоза, зафиксированных и прошедших в областном кожно-венерологическом диспансере г. Владимира (103 пациента — мужчины (92%) и 9 пациенток — женщины).

Возбудителями дерматомикоза в 59 случаях был Trichophyton rubrum (52,7%), в 43 — Epidermophyton floccosum (38,4%), в 10 — Trichophyton mentagrophytes (8,9%). У 64 человек (57,1%) высыпания в паховой области были типичны и представляли собой очаги розовато-коричневого цвета с четкой краевой зоной и шелушением на поверхности. У 28 пациентов (25,6%) имелись островообразные очаги с яркой гиперемией и инфильтрацией. В 13 случаях (11,6%) у больных с атопией, в анамнезе или в настоящее время страдающих атопическим дерматитом, в очагах развилась лихенификация. У 7 человек заболевание протекало в виде фолликулярно-узелковой формы с вторичным инфицированием бактериальной инфекцией с пустулями и гнойными корками.

Для лечения пациентов с типичными проявлениями пахового дерматомикоза применяли местные противогрибковые средства, при остальных формах — крем акридерм ГК (фирма «Акрихин»), комбинированный препарат, состоящий из бетаметазона дипропионата, клотримазола и гентамицина сульфата. Крем акридерм оказывает противогрибковое, противовоспалительное, противоаллергическое, противогрибковое и антибактериальное действие. Для лечения паховых форм микозов не зарегистрировали.
нин (фирмы «Верофарм») по 100 мг в день 14 дней или 200 мг в день 7 дней.

Выводы:
1. Этиологически паховый дерматомикоз вызывает не только *Epidermophyton floccosum*, но и другие дерматомицеты.
2. В настоящее время часты случаи нетипичного течения пахового дерматомикоза.
3. При островоспалительных формах, в случае присоединения вторичной инфекции, в начале лечения желательно применение комбинированных средств, например, крема акридерм ГК.
4. При осложненных случаях микоза желательно использование системных антимикотиков.

КОРРЕЛЯЦИОННЫЕ ВЗАИМОСВЯЗИ ПОКАЗАТЕЛЕЙ ФАГОЦИТОЗА У ИММУНОКОМПРОМЕТИРОВАННЫХ БОЛЬНЫХ

Байдуйсенова А.У.
Медицинский университет «Астана», г. Астана, Казахстан

Высокая информативность НСТ-теста изучена при многих патологических состояниях – при ожоговой болезни, хирургической патологии, а также при бактериальных, грибковых и вирусных инфекциях.

Объекты и методы. НСТ-тест ставили в двух вариантах: спонтанном и индуцированном. Индуцированный НСТ-тест с пирогеналом (иНСТ) дает возможность судить о потенциальной реактивности системы нейтрофильно-фагоцитарной реакции. Пациентов разделили на группы: «группа риска», лица с онихомикозами и ВИЧ-инфицированные с грибковой патологией.

Результаты. Во всех обследуемых группах спонтанный НСТ-тест (сНСТ) был достоверно повышен, то есть отмечали значительную активацию системы нейтрофилов, направленную на захват и нейтрализацию интеграционных типов взаимодействия вирусов и грибов (в 20,9; 3,62 и в 2,84 раза (p<0,01). При анализе иНСТ-теста в первой группе наблюдалось снижение резервных возможностей нейтрофилов, индуцированных пирогеналом (иНСТ-тест – 39,6±3,2%; ИАН–0,89±0,48, при сНСТ-тесте – 25,25±2,95% и ИАН –0,54±0,38). Следует отметить, что такое снижение резервных возможностей нейтрофилов имеет место при ВИЧ-инфекции. Во второй группе (при онихомикозе) фактически отсутствовали резервные возможности: сНСТ-тест — 30,01±3,98%, иНСТ-тест — 31,6±3,7%.

При проведении корреляционно-регрессионного анализа между показателями противовирусной защиты установлено, что в «группе риска» повышение активации нейтрофилов в сНСТ-тесте тесно взаимосвязано с адгезивными свойствами нейтрофилов (r = +0,94; p = 0,001). Кроме того, выявили сильные взаимосвязи между качественными показателями активации нейтрофилов в спонтанном и индуцированном вариантах НСТ-теста (r = +0,97; p=0,001). У лиц с онихомикозами повышение сНСТ-теста тесно взаимосвязано с увеличением обсемененности кожи грибами (r = +0,74; p = 0,03), в сравнении с группой контроля. Следует отметить о сильной корреляционной связи сНСТ-теста с повышенной адгезивной активностью нейтрофилов (r=+0,95; p=0,01). Данные корреляционного анализа у ВИЧ-инфекционированных лиц с грибковой патологией указывают на тесные коррелятивные взаимосвязи повышения сНСТ-теста с повышением адгезивности нейтрофилов (r = +0,94; p=0,001), что, возможно, связано с суперантителенность – повышением общей численности обсемененности кожных покровов (r=+0,62; p=0,07). Сильные коррелятивные взаимосвязи между качественной характеристикой активации нейтрофилов в спонтанном и индуцированном НСТ-тестах (r=+0,99; p=0,001) свидетельствуют о закономерном снижении функциональной активности нейтрофилов при ВИЧ-инфекции, что, возможно, связано с присутствием РНК ВИЧ в полиморфноядерных нейтрофилах.

МИКОБИОТА ВЕРХНИХ ДЫХАТЕЛЬНЫХ ПУТЕЙ У ПАЦИЕНТОВ ИЗ Г.АСТАНА

Байдуйсенова А.У., Аскарова Г.К., Мнайдарова Р.С., Байдуйсенов Н.С.
Медицинский университет Астана, ГУ «Центр санитарно-эпидемиологической экспертизы» Медицинский центр управления делами Президента г.Астаны, Казахстан

За последние десятилетия возросло число микотических поражений ЛОР-органов. Проблема выявления и лечения грибковых инфекций в отоларингологии приобретает все большую актуальность по ряду причин: широкое распространение, предрасполагающие факторы, более тяжелое течение данной патологии. Наряду с этим, этиологическую роль грибов в воспалительных заболеваниях верхних дыхательных путей (ВДП) оценивают недостаточно, что приводит к неправильной интерпретации характера болезни и к нерациональному лечению.

Цель исследования – изучение спектра микобиоты верхних дыхательных путей при заболеваниях ЛОР-органов.

Материалы и методы. Обследованы 244 пациентов с клиническими признаками грибковой инфекции, находившихся на лечении в медицинском центре управления делами Президента г.Астаны, разного пола, возрастного спектра и длительности заболевания. Материал исследовали методом микроскопии, а также методами иммунологического анализа (ИФА) и ДНК-диагностики.
выделение органических кислот микромицетами-биодеструкторами идентифицировали методом газо-жидкостной хроматографии на хроматографе Agilent Technologies 5975 BvLMSD с использованием базы данных стандартов NIST MS 2.0.

Результаты. В культуральной жидкости двадцатисуточных культур всех исследуемых микромицетов идентифицировали молочную, уксусную, щавелевую, лимонную и глюконовую кислоты. В составе метаболитов P. griseo-purpureum, P. olivino-viride, P. oxalicum и P. vitale также были определены яблочная, фумаровая и янтарная кислоты, а в пробах A. niger и P. brevicopterum — глицериновая кислота. Наибольшее количество щавелевой кислоты (самой сильной органической кислоты) обнаруживали в культуральной жидкости P. oxalicum и P. vitale, что составляло, соответственно, 599±15 мкг и 504±22 мкг в пробе. Наибольшее количество лимонной кислоты, также достаточно агрессивной по отношению к субстрату, содержалось в культуральной жидкости A. niger и составляло 398±25 мкг в пробе. На примере A. niger, P. brevicompactum и P. vitale показано, что кальций оказывает стимулирующее влияние на выделение щавелевой кислоты. Её количество было значительно выше на среде, содержащей CaCO3, чем на других типах сред.

Результаты исследования могут иметь значение для выяснения механизмов процессов биодеструкции, связанных с ацидофицирующей деятельностью микромицетов.
Результаты. При анализе культуральной жидкости грибов Aspergillus niger, Penicillium oxalicum и P. vitale, проведённом на 7, 15, 25, 40 и 60 сутки их культивирования, показано, что на ранних стадиях роста микромицетов обнаруживается преимущественно глюконовая кислота, количество которой составляет от 833±41 мкг в пробе у семисуточных культур P. oxalicum до 4800 ±241 мкг — в пробе у P. vitale. У P. oxalicum на ранних стадиях роста выделяется также значительное количество (418±23 мкг) яблочной кислоты. При дальнейшем культивировании количество глюконовой кислоты в культуральной жидкости всех грибов снижается и активируется выделение лимонной кислоты. Её максимальные количества (477±65 мкг — в пробе) фиксировали на 17 сутки культивирования у A. niger и на 25 сутки — у P. vitale (98±12 мкг) и P. oxalicum (121±8 мкг — в пробе). Щавелевая кислота, хотя и выделялась грибами на ранних стадиях роста (7 суток), но её количество достигало максимума на сороковые сутки роста культуры (727±18 мкг — у A. niger, 4171±44 мкг — у P. vitale и 2090±44 — у P. oxalicum). Содержание других кислот при этом существенно снижалось. При более продолжительном культивировании количество щавелевой кислоты также начинало уменьшаться. Снижение концентрации кислот в культуральной жидкости A. niger происходило менее интенсивно, чем у P. vitale и P. oxalicum.

Полученные данные позволяют уточнить особенности выделения органических кислот грибами в процессе их роста и развития и могут быть использованы для дальнейшего исследования ацидофильной активности микромицетов.

Объекты и методы. Под нашим наблюдением находилось 28 пациентов в возрасте от 47 до 69 лет. У 25 из них была выявлена различная эндокринная патология (сахарный диабет на фоне избыточной массы тела, аутоиммунный тиреоидит и др.), при этом у 22 пациентов клинически и лабораторно был установлен диагноз «кандидозный вульвовагинит». На слизистой оболочке гениталий имели место атрофичные зоны, а пораженные кандидозом участки были представлены эрозионными дефектами, с четкими границами, мокнущей поверхностью. Имелись белесоватые выделения из половых путей. Пациентки предъявляли жалобы на болезненные ощущения, выраженные чувства жжения и зуда, а также на неприятный запах. Учитывая выраженную инфильтрацию и сухость тканей, мы применяли антимикотический препарат на мазевой основе и в виде вагинальных свечей. В качестве препарата выбора мы использовали «Экзифин» — эффективный против дрожжеподобных грибов, в первую очередь, рода Candida. Через 3-5 дней от начала лечения уменьшались островообразные уплотнения, исчезали зуд и неприятный запах. Полностью процесс разрешался через 10-14 дней.

Таким образом, у больных со склероатрофическим лихеном с сопутствующей эндокринной патологией, кандидозный вульвовагинит протекает тяжело и упорно, что требует назначения антимикотических препаратов в различных формах одновременно (мазь + вагинальные свечи) длительным курсом.

КАНДИДОЗ СЛИЗИСТЫХ ОБОЛОЧЕК У ПАЦИЕНТОВ СО СКЛЕРОАТРОФИЧЕСКИМ ЛИХЕНОМ

Белова Е.А., Гусева С.Н.
Медицинская академия им. И.И. Мечникова, Санкт-Петербург, Россия

MUCOSAL CANDIDOSIS IN PATIENTS WITH SCLEROTIC LICHEN

Belova E.A., Guseva S.N.
I.I. Mechnikov State Medical Academy, Saint Petersburg, Russia

Каменистый субстрат — труднодоступное местообитание для гетеротрофов, предрасполагающее к формированию различных форм адаптивных стратегий. Дискуссионным является вопрос о специфичности и физиологической приуроченности литобионтных грибов именно к каменистому субстрату. В научной литературе описаны несколько видов микромицетов, встречающихся только на камне, однако большинство других видов известны также и как обитатели почвы или растений. Не выяснено, насколько независимы популяции литобионтов от популяций аналогичных видов на других субстратах. Прояснение этих вопросов имеет фундаментальное и прикладное значение.

Цель работы — определить источники формирования...
популяций литобионтов на начальных стадиях колонизации камня. Сбор материала для долгосрочного (в течение 2-х лет) мониторинга колонизации камня литобионтными грибами проводят на карбонатных и силикатных горных породах в черте Санкт-Петербурга. Изоляты выделяют в культуру ежемесячно методами прямого посева, мазков и отпечатков с пробных площадей, заложенных на фрагментах камня на начальной стадии биоколонизации. Проводят видовую идентификацию, и изоляты, совпадающие на всех трех субстратах, помещают в коллекцию. Группу типичных литобионтов вычленяют на новое разнообразия на субстратах показывают закономерные сезонные пики численности и разнообразия грибов, однако установили, что существует группа «внезараженных» видов, постоянно изолируемых с камня и из окружающих субстратов, среди которых доминирует вид \textit{Cladosporium cladosporioides}. Микобиота камня на исследуемых площадях формируется именно этими видами. В дальнейшем мы планируем изучение молекулярно-биологических и морфо-физиологических свойств отобранных изолятов с целью установления прямых связей между популяциями на сопряженных субстратах.

Работа выполнена при поддержке Программы фундаментальных исследований Президиума РАН «Происхождение биосферы и эволюция гео-биологических систем», Подпрограмма 2 "Эволюция гео-биологических систем".

РЕГИСТР БОЛЬНЫХ ИНВАЗИВНЫМ АСПЕРИГИЛЕЗОМ ЛЕГКИХ В САНКТ-ПЕТЕРБУРГЕ

Борзова Ю.В. 1, Десятик Е.А. 1, Хостелиди С.Н. 1, Попова М.О. 4, Чернепятова Р.М. 1, Богомолова Т.С. 1, Игнатьева С.М. 1, Шуриптина О.А. 1, Ковалев А.С. 1, Зобнихин И.С. 1, Зубаровская Н.И. 1, Медведева Н.В. 2, Климончик А.В. 2, Васильева Н.В. 1, Климко Н.Н. 1

1 НИИ медицинской микологии им. П. Н. Кашкина и кафедра клинической микологии, аллергологии и иммунологии ГОУ ДПО СПб МАПО; 2 Ленинградская областная клиническая больница; 3 Детская городская больница №1; 4 Санкт-Петербургский государственный медицинский университет им. А. П. Ефремова; 5 Городская больница №31 (Центр передовых медицинских технологий), Санкт-Петербург, Россия

REGISTER OF PATIENTS WITH INVASIVE PULMONARY ASPERGILLOSIS IN SAINT-PETERSBURG

Borzova Y.V. 1, Desyatik E.A. 1, Khostelidi S.N. 1, Popova M.O. 4, Chernepiatova R.M. 1, Bogomolova T.S. 1, Ignatyeva S.M. 1, Shchupristskaja O.A. 1, Kovalin A.S. 1, Zijugin I.S. 1, Zubarovskaja N.I. 1, Medvedeva N.V. 1, Klimovich A.V. 1, Vasiljeva N.V. 1, Klimko N.N. 1

1 Kashkin Research Institute of Medical Mycology, Department of Clinical Mycology, Immunology and Allergology, SEI APE SPb MAPE; 2 Leningrad Regional Clinical Hospital; 3 Children's hospital №1; 4 Saint Petersburg State Medical University named I.P. Pavlov (Institute of Children's hematology and transplantology named R.M. Gorbachov); 5 City Hospital №31 (Center of leading medical technology), Saint Petersburg, Russia

Цель — определить демографические показатели, фоновые заболевания, спектр возбудителей, основные клинические признаки и выживаемость у больных инвазивным аспергиллезом легких (ИАЛ) в Санкт-Петербурге.

Методы исследования. Создан регистр больных инвазивным аспергиллезом в Санкт-Петербурге, в котором ретроспективно проанализировали демографические, клинические признаки, результаты микологического исследования и лечения. Диагноз был установлен на основании критериев EORTC/MSG 2008 г. Идентификацию идентификацию возбудителей аспергиллеза проводили с помощью микроскопического исследования. Галактоманнан в сыворотке крови больных определяли с помощью тест-системы "Platelia Aspergillus EIA" (Bio-РАД). Статистическую обработку полученных результатов проводили с помощью программы Microsoft Excel.

Результаты. Получена информация о 217 пациентах из 14 многопрофильных стационаров Санкт-Петербурга в период с 1998 по 2008 гг.: 166 взрослых пациентов (76,5%) в возрасте от 19 до 76 лет (медиана возраста – 43,3) и 51 ребенок (23,5%) в возрасте от 1 до 18 лет (медиана возраста – 11). Соотношение мужчин и женщин составило 1:4,1 (127/90). Основными заболеваниями у больных были: гематологические заболевания (89,8%), хроническая об-
структурная болезнь легких (6%), негематологические онкологические заболевания (1,8%), туберкулез (1,4%), заболевания соединительной ткани (0,9%), хронический необструктивный бронхит, альвеолярный протеиноз в сочетании с туберкулезом, гистиоцитоз и лекарственный агранулоцитоз (соответственно, по 0,4%).

Выявили основные факторы риска развития ИАЛ: применение цитостатиков — 88,5%, системных глюкокортикостероидов — 57,1%, агранулоцитоз — 77%, лимфоцитопения — 55,5%.

Основными клиническими проявлениями ИАЛ были: лихорадка – у 87,6% больных, кашель – у 63,7%, одышка – у 51,9%, кровохарканье — у 16,6%. КТ-признаки микоза легких выявили у 97% больных.

Определение галактоманнана методом «Platelia» в сыворотке крови больных было выполнено 88,5% пациентам, из них в 60,9% случаев результат был положительным.

Микроскопическое и культуральное исследования бронхоальвеолярного лаважа провели у 44% пациентов, мокроты – у 36,2%. При микроскопии микромицеты выявили в 28,5% субстратов, при посеве Aspergillus spp. выделили из 30% субстратов. Среди них: Aspergillus fumigatus составляли 40,8 %, Aspergillus niger — 30,6%, Aspergillus spp. — 18,4%, Aspergillus flavus — 6,1%, Aspergillus ochraceus — 2%, Aspergillus versicolor — 2%. Сочетание двух и более видов микромицетов рода Aspergillus обнаружили в 14% случаев.

По классификации EORTC/MSG 2008 г., диагноз ИАЛ был доказанным у 4% больных, вероятным — у 66%, возможным — у 30%. У 95% больных диагноз был поставлен прижизненно.

Антимикотическую терапию получали 93% пациентов. Общая выживаемость в течение 12 недель составила 66,7%, в течение 12 мес. — 29,5%.

Выводы. У больных в Санкт-Петербурге (1998-2008 гг.) ИАЛ развивался преимущественно у гематологических больных, получающих цитостатики и глюкокортикостероиды. Основными факторами риска были агранулоцитоз и лимфоцитопения. Aspergillus fumigatus и A. niger зарегистрировали как наиболее частые возбудители ИАЛ.

Клинические признаки ИАЛ включали в себя лихорадку, кашель, одышку. Диагноз ИАЛ ставили на основании комплексной оценки факторов риска развития микоза, данных КТ, микробиологического исследования биосубстратов и определения галактоманнана в сыворотке крови.

МИКОБИОТА ДИАГНОСТИЧЕСКИ ЗНАЧИМЫХ ЛОКУСОВ У ДЕТЕЙ С ОНКОЛОГИЧЕСКИМИ И СОМАТИЧЕСКИМИ ЗАБОЛЕВАНИЯМИ

Боронина Л.Г.1,2, Лавриненко Е.В.2
1Уральская государственная медицинская академия, 2Областная детская клиническая больница №1, Екатеринбург, Россия

При быстро возрастающем спектре возбудителей микозов, многие из которых резистентны к применяемым препаратам, необходимы своевременное выявление грибковой инфекции и идентификация возбудителя, а также динамическое наблюдение за микобиотой различных локализаций для правильного назначения этиотропной противогрибковой терапии, что является обязательным условием успешного лечения.

Цель исследования — провести сравнительный анализ микобиоты диагностически значимых локусов у детей с онкологическими и соматическими заболеваниями.

Методы и средства. Проводили изучение микобиоты крови, ликвора, мочи, мокроты, БАЛ, трахеи, катетеров, отделяемого из уха, желудочного содержимого, слизистых оболочек зева и носа, полученных от 135 детей в возрасте от 1 года до 18 лет с онкологическими заболеваниями (острый лейкоз в разной стадии лечения — всего 2105 проб), и от 1365 пациентов в возрасте от 1 суток до 3 месяцев с соматическими заболеваниями (недоношенность, кардиореспираторный дистресс синдром — всего 3808 проб), находившихся на лечении в ОДКБ №1 в течение 2007-2008 гг. Посев крови проводили в Peds plus, Aerobic, Mycosis для Bactec 9050; посев других материалов — на агар Сабуро количественным способом. Для идентификации грибов использовали классические методы, тест системы ID 32 C (ATB Expression) и RY ID (MicroScan WalkAway 96).

Результаты. Частота обнаружения грибов из диагностически значимых локусов у онкологических больных выше, чем у соматических, и составляет 11,9% и 2,8% соответственно (p<0,05). Наличие Candida spp. расценено как клинически значимая инфекция при выделении в норме из стерильного материала, в других случаях — как колонизация. У онкологических больных шире спектр возбудителей грибковой инфекции — 13 разновидностей грибов, а у соматических — 10 разновидностей. Наиболее часто обнаруживали колонизацию и инфекцию, вызванную C. albicans, как у детей с онкологическими (75,3%), так и соматическими...
ми заболеваниями (76,9%). Среди инфекций, вызванных грибами группы non-albicans, у онкологических больных преобладали C. krusei и C. glabrata, а у соматических больных — C. tropicalis и C. lusitaniae. Плесневые грибы, в частности род Penicillium spp., был обнаружен только у больных с онкологической патологией.

ХАРАКТЕРИСТИКА ИЗОЛЯТОВ CRYPTOCOCCUS NEOFORMANS ИЗ ОКРУЖАЮЩЕЙ СРЕДЫ САНКТ-ПЕТЕРБУРГА

Босак И.А.
НИИ медицинской микологии им. П.Н. Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

CHARACTERISTIC OF ENVIRONMENTAL STRAINS CRYPTOCOCCUS NEOFORMANS IN SAINT PETERSBURG

Босак И.А.
Kashkin Research Institute of Medical Mycology, SEI APE SPb MAPE, Saint Petersburg, Russia

Базидиомицетовые, капсулированные дрожжи Cryptococcus neoformans распространены повсеместно в мире и способны вызывать тяжелые поражения центральной нервной системы у иммунокомпрометированных и реже — у иммунокомпетентных лиц. По данным различных авторов, криптококкоз развивается у 6-10% больных СПИДом.

Учитывая рост частоты криптококкоза у людей в России (Санкт-Петербург), закономерным оказывается вопрос о природных резервуарах этой инфекции.

Цель работы — исследование содержания криптококков в различных природных субстратах.

Объекты и методы. В качестве возможных природных субстратов, содержащих Cryptococcus neoformans, исследовали: помет голубей с чердаков жилых зданий двух районов Санкт-Петербурга — 124 пробы, почву и листовой опад — 18 проб, содержимое кишечника птиц, погибших от неизвестных причин (воробы, сороки, воробьи, синицы, снегири), — 63 пробы, материал со слизистых оболочек зева и носа домашних животных (кошки, собаки) — 47 проб.

В качестве питательных сред для выделения криптококков использовали: среду Сабуро-агар с левомицетином и гентамицином, среду с L-дигедроксифенилаланином и бифенилом и агаризованную среду с инозитом, единственным источником углерода в которой является мио-инозит.

Физиолого-биохимические особенности выделенных культур дрожжей (ассимилятивную и ферментативную активности) изучали с помощью сред: с яичным желтком, Христенсена, с L-ДОФА и тест-системы «Auxacolor®2» (Bio-Rad, Франция).

Патогенность криптококков определяли на модели экспериментального криптококкоза при внутривенно введении белым беспородным мышам в дозе 10³, 10⁴, 10⁵, 10⁶, 10⁷ клеток на мышь. В качестве количественной характеристики вирулентности различных штаммов криптококков была принята величина LD₅₀, которую определяли для каждого штамма на 28 сутки эксперимента методом «пробитов».

Результаты. При исследовании природных субстратов было выделено 4 изолята C. neoformans из голубиного помета с использованием среды с левомицетином и гентамицином. Остальные исследованные природные материалы не содержали криптококков. Частота выделения из помета составила 3,2%.

Все изоляты проявляли типичный для криптококков рост на плотной среде Сабуро к третьим суткам инкубации при 40 °С и не проявляли способности к росту при 42 °С.

При выращивании на агаре Христенсена все штаммы проявили высокую уреазную активность к третьим суткам наблюдения, при температуре инкубации 37 °С — более активно.

Природные изоляты криптококков обладали высокой фенолоксидазной активностью на синтетической среде с L-ДОФА, причем при инкубации 37 °С это свойство было более выражено.

При определении фосфолипазной активности криптококков выявили зоны преципитации на среде с желточным агаром через трое суток выращивания при 37 °С. Ширина зоны преципитации и, соответственно, Pz (отношение диаметра колонии гриба к диаметру зоны помутнения среды) варьировали от 0,54 до 0,62.

Величина сублетальной дозы LD₅₀, составила 1∙10⁶ — 1∙10⁷ клеток/мышь для четырех изолятов, что характеризует их как слабовирулентные.

Выводы
1. Природный резервуар C. neoformans в Санкт-Петербурге — отложения голубиного помета на чердаках зданий.
2. Выделенные в Санкт-Петербурге из окружающей среды штаммы C. neoformans обладают слабой вирулентностью.
ОПЫТ ПРИМЕНЕНИЯ «ЛАМИЗИЛА УНО»® В ТЕРАПИИ БОЛЬНЫХ МИКОЗАМИ СТОП
Буравкова А.Г., Новикова Л.А., Демьянова О.Б., Полуэктова Т.Е.
Воронежская государственная медицинская академия им. Н.Н. Бурденко, Россия

THE EXPERIENCE OF TREATMENT OF FEET MYCOSES WITH «LAMIZIL UNO»®
Voronezh State Medical Academy named by N.N. Burdenko, Russia

Микозы стоп относят к наиболее распространенным заболеваниям человека, поэтому проблема их лечения и профилактики микозов стоп имеет важное медико-социальное значение.

Цель исследования – оценить эффективность, безопасность и переносимость 1% пленкообразующего раствора тербинафина гидрохлорида — «Ламизил Уно»® одно-кратного применения.

Материалы и методы. Под нашим наблюдением находилось 28 больных, страдающих микозом стоп: 12 мужчин и 16 женщин в возрасте от 20 до 65 лет. Длительность заболевания варьировала от 2 недель до 15 лет. Диагноз микоза стоп у всех больных подтвержден лабораторно (микроскопическое исследование в очагах поражения), и гипогеомагнитного поля (2 мкТл) на ряд морфофизиологических свойств у двух видов мицелиальных грибов (Neurospora crassa и Ulocladium consortiale) двух видов микромицетов факторов.

Результаты. Клиническую эффективность оценивали через 3, 7, 14 и 28 сут после нанесения раствора. На 7-е и 28-е сутки проводили оценку микологической эффективности путем микроскопического обследования. На 3-и сутки терапии у всех пациентов наблюдалось успешное улучшение: исчезала активная эритема, эрозии эпителиализировались, на месте полостных элементов появились корочки, значительно уменьшилось шелушение. Через неделю в очагах поражения отмечали лишь незначительное шелушение, легкую застойную эритему после отторжения корок. Через 14 суток у всех пациентов отсутствовали клинические симптомы микоза стоп. Микроскопические исследования дали отрицательные результаты на 7-е и 28-е сутки. В общих анализах крови и мочи, биохимических показателях крови через 2 недели после окончания лечения патологических отклонений не выявили. Ни у одного из пациентов, получавших лечение «Ламизилом Уно»®, побочных явлений не наблюдалось. Все пациенты отмечали особое удобство и простоту применения препарата (однократно) и приятные органолептические свойства раствора «Ламизил Уно»®.

Выводы. Пленкообразующий раствор «Ламизил Уно»® является высокоэффективным, безопасным и удобным в применении препаратом для лечения микозов стоп.

ОСОБЕННОСТИ РАЗВИТИЯ МИКРОМИЦЕТОВ ПОД ДЕЙСТВИЕМ ПОСТОЯННЫХ МАГНИТНЫХ ПОЛЕЙ
Быстрова Е.Ю.®, Богомолова Е.В.®, Гаврилов Ю.М.®, Панина Л.К.®
1Санкт-Петербургский государственный университет; 2Ботанический институт им. В.Л. Комарова РАН, Санкт-Петербург, Россия

Цель исследования — изучение характера воздействия постоянных магнитных полей (8 мГл), превышающих магнитное поле Земли (МПЗ), и гипогеомагнитного поля (2 мкТл) на ряд морфофизиологических свойств у двух видов микромицетов Ulocladium consortiale и Neurospora crassa.

Материалы и методы. Экранирующая камера изготовлена из сплава аморфного магнитомягкого материала АМАГ172. Степень экранирования камеры позволяет уменьшить величину магнитной индукции со значения 48 мкТл (фон МПЗ на средних широтах) до 2 мкТл. Для микрофотосъемки использовали цветную цифровую камеру LEICA DC 300F (Leica, Germany), смотренную на тринокулярный микроскоп H605T (WPI, USA).

Результаты. Установлено, что постоянное магнитное поле, превышающее МПЗ, главным образом, оказывает влияние на скорость роста культуры, в то время как экранированное МПЗ воздействует на процессы спорообразования, морфологию клеток, а также снижает ферментативную (фосфолипазную) активность у исследуемых видов грибов. Отсутствие корреляции между полосами наконечников постоянного магнита и морфофизиологическими показателями в условиях экранированного МПЗ. Весьма успешным может оказаться использование магнитостатических полей для подавления роста пlesenевых грибов на трудноодоступных (бедных) субстратах. Кроме того, применение магнитных методов может увеличивать эффективность действия других неблагоприятных для развития микромицетов факторов.

Работа поддержана грантами программы АВЦП «Раз-
ВЛИЯНИЕ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ КРАСНОЙ ОБЛАСТИ СПЕКТРА НА РАЗВИТИЕ МИКРОМИЦЕТОВ

Валгонен К.А., Власов Д.Ю., Крыленков В.А.
Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Согласно современным представлениям, оптическое излучение (ОИ, 200-750 нм) в нелетальных дозах оказывает мощные регулирующие действия на адаптивно-защитные системы популяций клеток, обусловливающие их естественную резистентность к изменениям условий окружающей среды. Вместе с тем, механизмы воздействия ОИ на клетки, споры и колонии микромицетов изучены весьма слабо. Имеются лишь отдельные сведения о морфофункциональных показателях, свидетельствующих о регуляторном воздействии оптического излучения на микромицеты.

Цель работы — разработка методики оценки адаптивного ответа микромицетов на воздействие света красной области спектра и выявление основных типов защитных реакций у грибов на уровне морфологии колоний и ее структурных элементов.

В изучение были включены штаммы восьми видов микромицетов, выделенных из различных поврежденных материалов в Санкт-Петербурге: Aspergillus candidus, Aspergillus niger, Aspergillus versicolor, Cladosporium sphaerospermum, Penicillium purpurogenum, Penicillium citrinum, Scopulariopsis brevicaulis, Ulocladium atrum. На первом этапе эксперимента (выявление порога чувствительности колоний) четьередневые колонии микромицетов, выращенные на среде Чапека, были подвержены однократному облучению в темноте при комнатной температуре. На втором этапе эксперимента (выявление реакций на микрофизиологических показателях, свидетельствующих о регуляторном воздействии оптического излучения на микромицеты) производили облучение (длительность 15 минут). Наблюдали за развитием колоний на агаровых блоках (de Hoog, Guarro, 1995) в течение 4 дней, после чего микроскопировали в свето-вакуумный излучатель. Облученные колонии инкубировали в темноте при комнатной температуре. На третьем этапе эксперимента (выявление порога чувствительности колоний) четьередневые колонии микромицетов, выращенные на среде Чапека, были подвержены однократному облучению в темноте при комнатной температуре. На втором этапе эксперимента (выявление реакций на микрофизиологических показателях, свидетельствующих о регуляторном воздействии оптического излучения на микромицеты) производили облучение (длительность 15 минут). Наблюдали за развитием колоний на агаровых блоках (de Hoog, Guarro, 1995) в течение 4 дней, после чего микроскопировали в свето-вакуумный излучатель. Облученные колонии инкубировали в темноте при комнатной температуре.

Установили, что ОИ красной области спектра влияет на жизнедеятельность микромицетов. Реакции разной степени выраженности отмечали у всех изученных штаммов. Зафиксированы фотомодифицирующее действие излучения на развитие колоний, пигментацию, динамику конидогенеза и размеры конидий. При этом реакции разных видов довольно заметно различались.

Таким образом, чувствительность микромицетов к ОИ может быть хорошо выражена на морфологическом уровне. В дальнейшем необходимо изучение реакций микромицетов на физиолого-биохимическом и молекулярных уровнях.

ОНИХОМИКОЗ У БОЛЬНЫХ ПСОРИАЗОМ

Васильева Н.В., Чилина Г.А., Свиридова К.В.
Кафедра лабораторной микологии и патоморфологии микозов НИИ медицинской микологии им. П.Н. Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

Цель исследования — определить частоту онихомикозов при псориазе и выявить видовой состав возбудителей.

Материалы и методы. Обследовано 316 пациентов микологической клиники СПб МАПО с подозрением на онихомикоз по клиническим проявлениям, которые были подразделены на две группы. Первую группу составили 124 пациента с псориазом и поражением ногтевых пластин стоп в возрасте от 18 до 75 лет, длительностью заболевания от полугода до 38 лет. У 76 (61,3%) больных отмечали наперстковидную ониходистрофию, у 32 (25,8%) — онихолизис, у 29 (23,4%) — явления паронихии, часто выявляли подногтевой гиперкератоз — 74 (61,3%).

Вторую группу составили 192 человека с измененными ногтевыми пластинами стоп, не страдающие псориазом, в возрасте от 19 до 76 лет, с длительностью поражения ногтей от 2 до 19 лет. У 176 (91,7%) больных был выражен паронихийный подногтевой гиперкератоз, разрыхление ногтей со свободного края, у 20 (10,4%) — онихолизис; у всех пациентов пораженные ногтевые пластины были тусклые, желтосерого цвета.

Микологическое исследование ногтевых пластин проводили методами прямой микроскопии соскобов ногтевых пластин и посева на среду Сабуро с левомицетином. В дальнейшем необходимо изучение реакций микромицетов на физиолого-биохимическом и молекулярных уровнях.

Результаты. Микроскопическое исследование было положительным у 84 (64,5%) больных первой группы и у 164 (85,4%) — второй группы. Рост грибов при посеве ногтевых чешуек стоп был получен у 76 (61,3%) пациентов первой группы и у 140 (72,9%) — второй группы. Рост грибов при посеве ногтевых чешуек стоп был получен у 76 (61,3%) пациентов первой группы и у 140 (72,9%) — второй группы. Рост грибов при посеве ногтевых чешуек стоп был получен у 76 (61,3%) пациентов первой группы и у 140 (72,9%) — второй группы. Рост грибов при посеве ногтевых чешуек стоп был получен у 76 (61,3%) пациентов первой группы и у 140 (72,9%) — второй группы. Рост грибов при посеве ногтевых чешуек стоп был получен у 76 (61,3%) пациентов первой группы и у 140 (72,9%) — второй группы.
У больных псориазом, имеющих измененные ногтевые пластинки (1 группа), изолированный рост дерматомицетов был у 21 (48,8%) пациента. У 22 (51,2%) выявили смешанный рост дерматомицетов и дрожжевой и/или плесневой микобиоты. Дрожжи были представлены Candida albicans, C. parapsilosis, C. guilliermondii, Trichosporon mucoides, Rhodotorula spp. Из плесневой биоты обнаружили Penicillium spp. и Aspergillus spp.

Вывод. Онихомикоз выявил у 34,7% больных псориазом и у 71,3% пациентов с онихомикозом без псориаза. У пациентов с псориазом и онихомикозом значительно чаще обнаруживали ассоциации дерматомицетов с дрожжеподобными и плесневыми грибами.

Наличие ассоциированной плесневой или дрожжевой микобиоты не зависело от возраста, пола, длительности течения дерматоза и длительности онихомикоза. Сопутствующая микобиота не влияла на тип поражения ногтевых пластинок.

Цель работы — изучение состава и структуры сообществ микромицетов, населяющих жилые и рабочие зоны российской антарктической полярной станции «Беллинзгаузен», а также выявление грибов, образующих колонии на различных антропогенных субстратах в биоценозах, примыкающих к различным субстратам в биоценозах, примыкающих к району антропогенного влияния.

Сбор материала осуществляли в период 53 и 54 Российских антарктических экспедиций с применением комплекса методов отбора проб, фиксации, первичной обработки, хранения и идентификации материала. Детальный анализ проб выполняли на базе лаборатории микологии и альгологии СПбГУ в 2008-2009 гг. с использованием традиционных методов культивирования и идентификации грибов.

На обследованной территории к настоящему времени выявлены 84 вида микромицетов из 39 родов, а также многочисленные спороносящие и бесплодные формы микромицетов. Доминирующим по числу видов оказался род Penicillium – 19 видов, за которым следуют роды Acetomium и Aspergillus – по 6 видов. Преобладание отдельных видов носит локальный характер и наиболее выражено в антропогенной среде. Некоторые виды имели высокую встречаемость как внутри помещений, так и во внешней среде (Cladosporium sphaerospermum). Темноокрашенные грибы, образующие колонии на различных антропогенных материалах, доминировали на постах биомониторинга, периодически посещаемых людьми, а также в заброшенных сооружениях. Здесь распространены микромицеты из родов Alternaria, Aureobasidium, Cladosporium, Phialophora, Ulocladium, а также несколько видов рода Penicillium. В данных местообитаниях проявлялись условно-патогенные грибы. В жилых и рабочих зонах полярных станций доминировали виды рода Penicillium, за ними следуют представители родов Cladosporium и Aspergillus, что достаточно типично для внутренней среды жилых и рабочих помещений в разных климатических зонах. В целом, микобиота обследованного района формируется за счет космополитных видов.

Цель работы — изучение видового состава и структуры сообществ микромицетов во внутренней среде исторических зданий Санкт-Петербурга.

Микологические обследования проводили на 30 исторических объектах Санкт-Петербурга и пригородов. Учитывали состав зданий и сооружений, историю их эксплуатации, особенности внутренней среды помещений (осуществляли комплексные обследования). Для микологического анализа были выбраны объекты разного типа. С помощью пробоотборщиков ПУ-1Б. Выделение, культивирование и идентификацию микромицетов осуществляли по принятым методикам. При обработке данных в сравнительных целях применяли кластерный анализ.

В результате проведенных исследований во внутреннем пространстве исторических зданий выявлены 112 видов микромицетов, а также неспороносные формы грибов. Абсолютное доминирование на строительных и отделочных материалах обследованных зданий Санкт-Петербурга характерно для рода Penicillium (более 40 видов), за кото-
АНТИГРИБКОВАЯ АКТИВНОСТЬ НОВОГО ПРОИЗВОДНОГО АДАМАНТАНА — ЮК-86

Врынчану Н.А.1, Короткий Ю.В.2, Гриневич С.В.1, Балакир Л.В.1, Дудикова Д.М.1

1ГУ «Институт фармакологии и токсикологии АМН Украины», г. Киев, Украина, 2Институт органической химии НАН Украины, г. Киев, Украина

Выводы. Сочетание ЮК-86 ингибирует рост и размножение всех изученных штаммов грибов. Наиболее выраженным действием зарегистрировано у 56 штаммов Candida spp., выделенных из крови госпитализированных больных в Санкт-Петербурге в период 2006-2008 гг. В целом, 33 (22,8%) штаммов были резистентны к фукконазолу и вориконазолу. Штаммы C. albicans составляют 36 (23,4%) штаммов, C. parapsilosis — 34 (23,4%), C. guilliermondii — 28 (19,3%), C. glabrata — 14 (9,7%), C. tropicalis — 9 (6,2%), C. krusei — 5 (3,4%), C. lusitaniae — 4 (2,8%), C. famata — 2 (1,4%), C. lipolytica — 1 (0,7%), C. dubliniensis — 1 (0,7%), C. pelliculosa — 1 (0,7%), C. krusei — 1 (0,7%).

All isolates were tested for sensitivity to fluconazole. In total, 33 (22.8%) strains were resistant to fluconazole and voriconazole. Strains of C. albicans accounted for 36 (23.4%) strains, C. parapsilosis — 34 (23.4%), C. guilliermondii — 28 (19.3%), C. glabrata — 14 (9.7%), C. tropicalis — 9 (6.2%), C. krusei — 5 (3.4%), C. lusitaniae — 4 (2.8%), C. famata — 2 (1.4%), C. lipolytica — 1 (0.7%), C. dubliniensis — 1 (0.7%), C. pelliculosa — 1 (0.7%).

Возбудители кандидемии в Санкт-Петербурге

Выборкова И.В.

ННИ медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПбМАПО, Санкт-Петербург

ВОЗБУДИТЕЛИ КАНДИДЕМИИ В САНКТ-ПЕТЕРБУРГЕ

Выборкова И.В.

Кашкин Research Institute of Medical Mycology, SEI APE SPb MAPE, Saint Petersburg, Russia

Цель работы — изучить распределение видов, чувствительность к флуконазолу и вориконазолу штаммов Candida spp., выделенных из крови госпитализированных больных в Санкт-Петербурге в период 2003-2008 гг.

Методы. Выдовой идентификации культур дрожжей проводили с помощью теста на образование ростковых трубок в сыворотке крови коммерческой системы Ауксаколор-2 (БиоРад). Определение чувствительности культур к флуконазолу и вориконазолу выполняли диско-диффузионным методом согласно протоколу CLSI M44A (США).

Результаты. Изучено 145 штаммов Candida spp., выделенных из крови больных, госпитализированных в многопрофильных больницах Санкт-Петербурга. Распределение возбудителей кандидемии по видам: Candida albicans — 36 штаммов (24,8%); C. parapsilosis — 34 (23,4%); C. guilliermondii — 28 (19,3%); C. glabrata — 14 (9,7%); C. tropicalis — 9 (6,2%); C. krusei — 5 (3,4%); C. lusitaniae — 4 (2,8%); C. famata — 2 (1,4%); C. lipolytica — 1 (0,7%); C. dubliniensis — 1 (0,7%); C. pelliculosa — 1 (0,7%); C. krusei — 1 (0,7%).

All isolates were tested for sensitivity to fluconazole. In total, 33 (22.8%) strains were resistant to fluconazole and voriconazole. Strains of C. albicans accounted for 36 (23.4%) strains, C. parapsilosis — 34 (23.4%), C. guilliermondii — 28 (19.3%), C. glabrata — 14 (9.7%), C. tropicalis — 9 (6.2%), C. krusei — 5 (3.4%), C. lusitaniae — 4 (2.8%), C. famata — 2 (1.4%), C. lipolytica — 1 (0.7%), C. dubliniensis — 1 (0.7%), C. pelliculosa — 1 (0.7%).
МИКОЛОГИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРОТИВОГРИБКОВЫХ НАРУЖНЫХ СРЕДСТВ У ПАЦИЕНТОВ С МИКОЗОМ СТОП И ОНИХОМИКОЗОМ

Герасимчук Е.В., Гладко В.В., Герасимчук М.Ю.
9-ая консультативно-диагностическая поликлиника МВО, Государственный институт усовершенствования врачей МО РФ, г. Москва, Россия

ОСОБЕННОСТИ ПОДБОРА И ПРИМЕНЕНИЯ СРЕДСТВ ПРОТИВОГРИБКОВОЙ ОБРАБОТКИ В БОЛЬНИЧНЫХ ЗАДАНИЯХ

Глушко Н.И., Халдеева Е.В., Лисовская С.А., Паршаков В.Р.
Казанский НИИ эпидемиологии и микробиологии, Казань, Россия

ПРОБЛЕМЫ МЕДИЦИНСКОЙ МИКОЛОГИИ, 2009, Т.11, №2
ХАРАКТЕРИСТИКА CANDIDA SPP. В ГРИБКОВО-БАКТЕРИАЛЬНЫХ АССОЦИАЦИЯХ ПРИ ВОСПАЛИТЕЛЬНЫХ ЗАБОЛЕВАНИЯХ ВЕРХНИХ ДЫХАТЕЛЬНЫХ ПУТЕЙ

Годовалов А.П.1,2, Быкова Л.П.1, Ожгибесов Г.П.2

1Пермская Государственная Медицинская Академия им. акад. Е.А. Вагнера; 2Медико-Санитарная ЧасТЬ ГУВД по Пермскому краю, Пермь, Россия

Цель работы — характеристика Candida spp., выделенных из грибково-бактериальных ассоциаций, при воспалительных заболеваниях верхних дыхательных путей.

Материалы и методы. Выделение микроорганизмов осуществляли при помощи классического микробиологического метода с идентификацией выросших видов по специфическим признакам. Определение чувствительности микроорганизмов к антимикотическим препаратам проводили диско-диффузионным методом.

Результаты. При исследовании 389 проб от больных с воспалительными заболеваниями верхних дыхательных путей Candida spp. обнаружили в 15,2% случаев, а в количестве 10³ колоннеобразующих единиц в 1 миллилитре (кОЕ/мл) — в 5,6%. Видовой спектр Candida spp. был представлен: C. albicans — 59,1% случаев, C. kefyr — 18,2%, C. krusei — 13,6%, C. guilliermondii — 4,5%. В монокультуре Candida sp. обнаружили в 27,3% проб. Сопутствовавшей Candida spp. бактериобиотой чаще всего были грамположительные кокки (85,7% проб) с преобладанием среди них стрептококков (83,3% проб). Ассоциации Candida spp. и грамотрицательных бактерий выявляли в 14,3% случаев (только представителей рода Klebsiella).

Candida spp. в ассоциациях со стафилококком были чувствительны к 3 антимикотикам в 100% случаев, в ассоциации со стрептококками к 3 антимикотикам — в 50% случаев, к 2 антимикотикам — в 25% и к одному препарату — в 25%. Все Candida spp., выделенные в ассоциации с klebsiеллами, были чувствительны к 3 препаратам.

Таким образом, в результате проведенных исследований показано, что устойчивость грибов в микробных ассоциациях к антимикотическим препаратам не одинакова. Наибольшую устойчивость представителей Candida spp. зарегистрировали в ассоциациях с видами из рода Streptococcus, последние при этом проявляли чувствительность к большинству антибиотиков.

ANTI-CANDIDA ALBICANS ACTIVITY OF THE YEAST PICHIA ANOMALA

Голубев В.И.

Всероссийская коллекция микроорганизмов (ВКМ), Пущино, Россия

ANTI-CANDIDA ALBICANS ACTIVITY OF THE YEAST PICHIA ANOMALA

Golubev V.I.

The all-Russian Collection of Microorganisms (VKM), Puschina, Russia

ИССЛЕДОВАНИЕ ПРОТИВОГРИБКОВОЙ АКТИВНОСТИ ХИТОЗАНА
Голубничая В.Н., Каплин Н.Н., Голубничий С.А.
Сумской государственный университет Медицинский институт, Сумы, Украина

THE RESEARCH OF CHITOSAN ANTIFUNGAL ACTIVITY
Golubnichaya V.N., Kaplin N.N., Golubnichiy S.A.
Sumy State University Medical institute, Sumy, Ukraine

Во всём мире постоянно проводят исследования по созданию новых антимикотиков для лечения кандидозов. Всестороннее исследование и разработка новых лекарственных форм на основе альтернативных препаратов чрезвычайно актуальны. Одним из таких препаратов является хитозан и его производные, которые, помимо антимикотической активности, обладают способностью восстанавливать нормальный состав микробиоты различных биотопов, местный и общий иммунитет.

Цель исследования — определение антимикотической активности хитозана и йодида хитозана по отношению к клиническим штаммам Candida spp., выделенным от беременных женщин.

Материалы, методы и результаты. Проведено определение антимикотической активности нативного хитозана и йодида хитозана по отношению к клиническим штаммам Candida spp., выделенным от беременных женщин.

Выводы. Таким образом, хитозан и его производное йодид хитозана обладают выраженной антимикотической активностью по отношению к Candida spp. и нуждаются в дальнейшем детальном изучении.

ВЛИЯНИЕ ИММУНОМОДУЛИРУЮЩИХ ПРЕПАРАТОВ НА ОБРАЗОВАНИЕ БИОПЛЕНОК ДРОЖЖЕВЫМИ ГРИБАМИ
Гордеева С.В., Иванова Е.В., Андрющенко С.В., Перунова Н.Б.
Институт клеточного и внутриклеточного симбиоза УрО РАН, Оренбург, Россия

IMMUNOMODULATING EFFECT OF DRUGS ON THE FORMATION OF BIOFLMS BY YEAST FUNGI
Gordeeva S.V., Ivanova E.V., Andryuschenko S.V., Perunova N.B.
The Institute for Cellular and Intracellular Symbiosis, OSC, Ural Department of RAS, Orenburg, Russia

Цель работы — изучение способности формирования биопленок определенными штаммами дрожжевых грибов под влиянием иммуномодулирующих препаратов.

Результаты. Иммуномодулирующие препараты оказывают влияние на образование биопленок дрожжевыми организмами из родов Candida и Rhodotorula. Установлено, что циклоферон оказывал преимущественно ингибирующее действие на образование биопленок грибами. Снижение оптической плотности бульонных культур Candida spp. и Rhodotorula spp. было отмечено в 94,4%, в среднем, на 67,8-68,2% от исходного уровня оптической плотности при концентрации препарата 0,0125 и 0,025 мкг/мл. В 5,6% случаев выявили увеличение пленкообразования или отмечали индифферентный эффект.

В отличие от циклоферона, полиоксидоний разновидно влиял на образование биопленок. Препарат чаще стимулировал их формирование тест-культурами, что отмечалось у 61-66% культур грибов, в среднем, в 1,5-2 раза от исходных значений оптической плотности. Снижение образования биопленок было у 33% культур дрожжевых грибов, в среднем, на 32,6% от оптической плотности в контроллах.
ИССЛЕДОВАНИЕ ГРИБКОВОГО ПОРАЖЕНИЯ ЖИЛЬНЫХ ПОМЕЩЕНИЙ С ЦЕЛЬЮ ЕГО ГИГИЕНЕЧЕСКОГО НОРМИРОВАНИЯ

Градусова О.Б.1, Чуприна О.В., Мельникова А.И., Калинина Н.В., Губернский Ю.Д.2

1Российский федеральный центр судебной экспертизы при Минюсте России, Москва; 2НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН, Москва, Россия

РЕСУЛЬТАТЫ ИССЛЕДОВАНИЯ ГРИБКОВОГО ПОРАЖЕНИЯ ЖИЛЬНЫХ ПОМЕЩЕНИЙ

При анализе имеющихся на сегодня сведений по вопросу распространения и влияния на здоровье людей грибкового загрязнения жилищ среды и практики производства судебных экспертиз показано, что для обеспечения безо-пасной среды обитания необходимо гигиеническое нормирование грибкового поражения жилых помещений. В этих целях были обобщены данные литературных и многолетних экспериментальных исследований НИИ ЭчиГОС им. А.Н. Сысина РАМН, на основании которых установлено, что содержание пропагул грибов во внутренней среде жилых помещений свыше 1500 КОЕ/м³ вызывает эндогенную аллергию (Candida albicans, Aspergillus niger)

С ПЕРЕЖИВАНИЕМ БРОНХИАЛЬНОЙ АСТМЫ У ДЕТЕЙ

Гурин О.П., Блинов А.Е., Варламова О.Н., Дементьева Е.А., Тимохина В.И.

Государственная педиатрическая медицинская академия, Санкт-Петербург, Россия

СРЕДИ различных видов сенсибилизации при бронхиальной астме у детей наименее изученной является грибковая. Микоаллергены могут проникать в организм как из вне (ингаляционным или пероральным путями), так и вызывать эндогенную аллергию (Candida spp.). Грибы рода Aspergillus обнаруживают в почве, гниющих растениях и овощах, тканях, сырах, консервированном мясе, газированных напитках, соевом соусе.

Цель работы — выявление специфической сенсибилизации к Candida albicans и Aspergillus niger при бронхиальной астме у детей, изучение особенностей иммунного реагирования.

Объекты и методы. Аллергодиагностику (ИФА) проводили у 180 детей в возрасте от 1 до 18 лет, страдающих бронхиальной астмой. Исследование иммунного статуса осуществляли иммунологическими тестами I уровня. Статистическую обработку проводили параметрическими методами.

Результаты. 13,3% обследованных детей имели высокий и очень высокий уровень IgE к C. albicans, 33,3% — умеренный. К A. niger высокий и очень высокий уровни сенсибилизации выявлены у 12,2% детей, умеренный — у 32,2%. Высокую аллергическую реакцию одновременно на C. albicans и A. niger диагностировали у 3 детей (1,67%). Среди всех обследованных пациентов общий IgE был повышен в 79,4% случаев. Из них у 50,3% детей он превышал возрастную норму в 3 и более раз. Корреляция между степенью сенсибилизации к грибам и уровнем общего IgE отсутствовала. В иммунограмме наблюдали дефект клеточного (дисбаланс лимфоцитов, патология фагоцитоза) и гуморального звеньев иммунитета: при высокой сенсибилизации к C. albicans — гипоиммуноглобулинемия A и G, при низкой сенсибилизации к A. niger — дефицит IgA на фоне гипериммуноглобулинемии М и G. При ярко выраженной
сенсибилизации к кандидозным аллергенам отмечали относительную Т-лимфоцитопению, т.к. *C. albicans* является полноценным Т-зависимым антигеном, а у детей с высоким уровнем сенсибилизации к *A. niger* были выражены относительные Т-лимфоцитоз и В-лимфоцитопения. У детей с высокой сенсибилизацией к обоим видам грибков достоверно чаще отмечали гипериммуноглобулинемию А (17,6%, р < 0,05), ЦИК в сыворотке крови (23,5%, р < 0,05).

Данные изменения иммунного статуса создают благоприятные условия для колонизации слизистых оболочек *Candida* spp., а ингаляция плесневых аллергенов способствует поддержанию длительности воспалительного, гиперергического процесса, а также развитию сопутствующей аутоиммунной патологии.

ПАТОМОРФОЛОГИЯ ПОРАЖЕНИЯ ГОЛОВНОГО МОЗГА МЫШЕЙ ПРИ КАНДИДОЗНОМ МЕНИНГОЭНЦЕФАЛИТЕ И ЕГО ЛЕЧЕНИИ КОМПОЗИЦИЕЙ АМФОТЕРИЦИНА В С ДИАЛЬДЕГИДДЕКСТРАННОМ

Гусева Е.В.¹, Потапова О.В.¹, Надеев А.П.², Шкурупий В.А.¹
¹ГУ Научный центр клинической и экспериментальной медицины СО РАМН, ²ГУ ВПО Новосибирский государственный медицинский университет, г. Новосибирск, Россия

Поражение головного мозга (ГМ) при кандидозном менингоэнцефалите характеризуется отечно-деструктивным синдромом, а его лечение затруднено в связи с наличием гематоэнцефалического барьера. Для адресной доставки лекарственных средств, в частности, используемого для лечения кандидоза амфотерицина В (АВ), можно применить лизосомотропные препараты – декстраны (Шкурупий В.А., 2007).

Цель исследования — изучить патоморфологические особенности поражения ГМ при кандидозном менингоэнцефалите и его лечении композицией АВ с диальдегиддекстраном (КАД).

Материалы и методы. Мыши-самцы линии СВА были разделены на 5 групп. Мышам 1-4 групп интрацеребрально вводили *C. albicans* на фоне иммунодефицита, индуцированного циклофосфаном. Мышам 1-й (контрольной) группы лечение не получали. Мышам 2-й группы вводили АВ, 3-й группы – КАД, 4-й группы – диальдегиддекстран, интраперитонеально, в одинаковых дозах. Мышам 5-й группы (ненфицированные) вводили циклофосфан. Образцы ГМ забирали на 56 сутки после заражения. Подсчитывали объемную плотность (Vv) перицеллюлярного и периваскулярного отека, некрозы.

Результаты. При микроскопическом исследовании ГМ у животных всех групп наблюдался перицеллюлярный и периваскулярный отек, в 1-4 группах — диффузную воспалительную инфильтрацию разной степени выраженности, в 1-й и 5-й группах — очаги микронекрозов. Объемные плотности (Vv) перицеллюлярного и периваскулярного отека у животных 2-й и 3-й групп были 2 раза, а у мышей 4-й группы (леченных КАД) — в 2,25 раза меньше, чем у мышей 1-й (контрольной) группы. У животных 5-й группы очаги некроза в ткани ГМ были единичными, а объем перицеллюлярного и периваскулярного отека на 50% меньше, чем у мышей 1-й группы.

Таким образом, патоморфологические изменения в головном мозге связаны в большей степени с развитием воспалительного процесса и отека, чем с введением АВ, КАД, циклофосфана. Введение КАД наиболее эффективно уменьшает выраженность отека ГМ на фоне кандидозного воспаления.

СЛУЧАЙ УСПЕШНОГО ЛЕЧЕНИЯ ИНВАЗИВНОГО АПРЕГИЛЛЕЗА ЛЕТКИХ И ПНЕВМОЦИСТНОЙ ПНЕВМОНИИ У РЕЦИПЕНТА ТРАНСПЛАНТА ТВОЛОВЫХ КЛЕТОК (ТКСК)

Десятик Е.А.¹, Борзова Ю.В.¹, Хостелиди С.Н.¹, Попова М.О.², Черноголова Р.М.¹, Игнатьева С.М.¹, Зубаровская Н.И.², Климко Н.Н.¹
¹НИИ медицинской микологии им. П.Н. Кашкина, кафедра клинической микологии, иммунологии и аллергологии ГУ ДПО СПб МАПО Росздрава, Санкт-Петербург, Россия.

*В научной литературе имеются единичные описания сочетания инвазивного аспергиллеза и пневмоцистной пневмонии у больных с вторичными иммунодефицитами (применение глюкокортикоэстероидов, метотрексата, ВИЧ-
мии у реципиента ТКСК. Инвазивный аспергиллез легких и пневмоцистной инфекции. Мы впервые представляем случай сочетания аспергиллеза легких и двухсторонней инфильтрации. В сыворотке крови — дважды галактоманнан методом "Platelia Aspergillus" был выявлен галактоманнан методом "Platelia Aspergillus". В промывной жидкости бронхов методом "Monofluor" был выделен Pneumocystis jiroveci. В промывной жидкости бронхов методом "Monofluor" был выделен Pneumocystis jiroveci. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температура тела, исчезла одышка. На КТ органов грудной клетки в динамике отмечали уменьшение количества и размеров патологических очагов. Через 2 недели состояние пациента ухудшилось. Лечение было эффективным, состояние пациента значительно улучшилось, нормализовалась температур
мимо выявленной патологии матки, придатков и шейки матки, у 59% больных обнаружили различные формы генитальной инфекции: трихомоноз – у 17%, мико-, уреаплазмоз – у 15%, бактериальный вагиноз – у 15%, хламидиоз – у 12% и др.

Учитывая значительную роль генитальных инфекций в развитии изменений эпителия шейки матки, цервикальный скрининг проводили всем обследованным. При цитологическом исследовании у 28,6% женщин с патологией шейки матки наблюдали реактивные изменения вагинального эпителия, связанные с дисгормональными и воспалительными процессами. Диспластические процессы обнаружили у 30,5%. С учетом результатов гистологического исследования, в 8,8% случаев выявили онкологические заболевания шейки матки: плоскоклеточную карциному in situ (6,6%) и высокодифференцированный плоскоклеточный рак с микрокавернозной (2,2%). У всех остальных обследованных лиц диспластические изменения имели реактивный характер.

У пациенток с ХРКГ выявили соматические заболевания: поливалентную аллергию – у 21%, холецистит – у 18%, пневмонию – у 14%, гастрит, ассоциированный с Helicobacter pylori, и язвенную болезнь – у 10%, бронхит – у 9%, тонзиллит – у 8%, цистит – у 8%, заболевания соединительной ткани – у 2%, бронхиальную астму – у 1%.

Заболевания щитовидной железы, сопровождавшиеся ее гипофункцией, сахарный диабет I и II типов при ХРКГ диагностировали у 17% женщин.

Выводы. Генитальные и экстрагенитальные заболевания поддерживают хроническое течение кандидоза гениталий, поэтому необходимо углубленное клиническое обследование для выявления экстрагенитальных и гинекологических заболеваний у больных ХРКГ. Целенаправленная патогенетическая терапия (коррекция генитальных и экстрагенитальных заболеваний) и адекватное антимикотическое лечение оптимизировали лечебную тактику, что позволило снизить частоту рецидивов и увеличить продолжительность ремиссии ХРКГ у женщин.

СОВЕРШЕНСТВОВАНИЕ ПРЕПОДАВАНИЯ ЛАБОРАТОРНОЙ МИКОЛОГИИ НА ЭТАПЕ ПОСТДИПЛОМНОЙ ПОДГОТОВКИ СПЕЦИАЛИСТОВ КЛИНИЧЕСКОЙ И ЛАБОРАТОРНОЙ ДИАГНОСТИКИ**

Егорова Е.Н., MILLER D.A., Горшкова М.А., Davidova I.B., Пустовалова Р.А.

ГГО ЛПО Тверская ГМА Росздрава, Россия

POSTGRADUATE PERFECTION OF CLINICAL AND LABORATORY MYCOLOGY TEACHING FOR PHYSICIANS OF DIFFERENT SPECIALITIES

Tver’ State Medical Academy, Russia

Современная эпидемиологическая ситуация характеризуется высоким уровнем заболеваемости грибковыми инфекциями. Это приводит к увеличению объема исследований различного биологического материала на грибы, направляемого дерматологами, отоларингологами, гинекологами, трихологами, стоматологами и докторами других специальностей. Поэтому изучение раздела «Лабораторная микология» должно быть обязательно включено уже на начальном этапе постдипломной подготовки всех специалистов лабораторной диагностики и более углублено изучаться на циклах тематического совершенствования для специалистов, которые работают в соответствующих отделах клинико-диагностических лабораторий.

На курсе клинической лабораторной диагностики (КЛД) факультета постдипломного образования ТГМА лабораторную микологию преподают врачам соответствующей специальности в интернатуре и биологам клинико-диагностических лабораторий на циклах профессиональной переподготовки специалистов. Учебный план дисциплины включает лекции, проводимые в форме компьютерных презентаций с большим количеством иллюстраций, а также практические и семинарские занятия по микроскопии нативных и окрашенных препаратов, приготовленных из материала с кожи, слизистых оболочек, волос, ногтей, пародонтальных карманов и т.д. Лекции по микологии читают как специалисты КЛД, так и врачи клинических специальностей.

** Примечание от редакции журнала:
1) в Санкт-Петербургской МАПО имеются самостоятельные кафедры «Лабораторная микология» и «Клиническая микология, аллергология и иммунология»;
2) «Клиническая лабораторная диагностика» — название не вполне удачное, поскольку клиническая диагностика должна базироваться на диагностике материала от больных миозами, а лабораторная — на объектах — возбудителях грибковых инфекций.
МЕЛАНИНЫ У ОПАКО(ФЕО) ГИФОМИЦЕТОВ – ПАТОГЕНОВ И САПРОБЕВ

Елинов Н.П.
НИИ медицинской микологии им. П.Н. Кашкина, ГОУ ДПО СПб МАПО,
Санкт-Петербург, Россия

Меланины – нерастворимые полимерные пигменты (чёрные, коричневые и красные), синтезирующиеся из фенольных соединений. Их подразделяют на зумеланины – чёрные гиалогифомицеты в тёмных средах некоторые гиалогифомицеты могут приобретать тёмную окраску, связанную с образованием тёмных пигментов (например, Aspergillus niger, Cryptococcus neoformans). Любое нагретое твёрдое тело излучает непрерывный спектр электромагнитной волны, включая УФ, и это излучение зависит от температуры твёрдого тела. Эффективный способ получения УФА – это возбуждение электрического разряда в газах и парах. При этом получают линейный спектр, тогда как от раскалённых тел (с температурой > 1600 °C) возникает сплошной спектр, относящийся преимущественно к видимой и инфракрасной областям спектра, а на УФ-спектр приходится порядка 0,1% излучения.

В последние годы всё чаще высказывают мысль о меланинах как факторах агрессии (вирулентности) болезнетворных грибов. Были изучены меланины, полученные в результате биосинтеза и меланини, синтезированные химически in vitro к окислению тиоцианата пероксидом водорода: использовали метод комбинационного сопоставления с Рамановским спектротетром (Spectra-Physics 2020). Использовали линию 514.5 нм. По совокупности накопленных данных показано, что в спектрах вышеназванных меланинов устойчиво дифференцировались их различные первичные структуры. Авторы предлагают, что вирулентность меланин-содержащих грибов, очевидно, следует рассматривать результатом высокой адаптивной способности этих микромицетов. При изучении влияния малых доз радиации на активность полифенолоксидазы (ПФО) в тирозинах (Тир)
ПРОБЛЕМЫ МЕДИЦИНСКОЙ МИКОЛОГИИ, 2009, Т.11, №2

Hormiscium resinae (штаммы 61 и 801) Т.И. Тугай, Н.Н. Ждановой и др. (2006 г.) обнаружены заметные изменения активности ПФО и Тир у названных штаммов, и это зависело от фазы роста гриба и наличия у штаммов радиоадаптивных способностей. Радиационное облучение активировало синтез меланина, особенно — у изолятов из объекта «Укрытие» (Украина). Меланины обладают радиопротекторными свойствами.

С помощью меланинов происходит поглощение той части световой энергии, которая необходима для нормальной жизнедеятельности организма. Излишнюю часть лучистой энергии Солнца меланины задерживают и отражают. УФА, ионизирующая радиация, аскорбиновая кислота, соединения висмута, мышьяка и серебра стимулируют образование меланина.

Под воздействием УФ-облучения происходит повышение ДНК-полимеразной и ДНК-лигазной активности меланин-содержащих грибов (С.П. Сидорик и др. 1994). Результатом УФ-облучения меланина является его дезполимеризация, и, как результат этого, происходит снижение фотозащитной и антирадикальной способностей пигмента. С этими изменениями сопряжены деструктивные процессы, сопровождающиеся появлением в среде низкомолекулярных флуоресцирующих соединений. При УФ-облучении в клетке аккумулируются супероксид-анионы — миорная часть супероксида может восстанавливаться гидрохиноновыми группами зумелианинов до пероксида водорода — вторичного продукта супероксид-аниона. В этой связи отмечу работу, выполненную в нашем институте по оценке устройства «Тимсон» (УПОО) для обработки обуви, искусственно контаминированной (10⁵ клеток) грибами — патогенами, условными патогенами и сапробами (всего около 20 штаммов). Устройство содержит УФ-лампы с длиной волны 315–405 нм (область А «мягкого и ближнего» УФИ и нагреватель, обеспечивающий локальную температуру 50—60 ºС. Экспозиция устройства в контаминированной обуви составляла 8-12 часов. Испытанное устройство в отношении разнокачественных культур микромицетов оказалось достаточно эффективным и может быть рекомендовано для практического использования больными с микозами стоп. В докладе будут затронуты и другие проблемы использования меланинов из тёмноокрашенных грибов.

ПЛАНКТОННАЯ И ПЛЁНОЧНО-СТРУКТУРИРОВАННАЯ ФОРМА ЖИЗНЕДЕЯТЕЛЬНОСТИ МИКРОМИЦЕТОВ В РАЗЛИЧНЫХ УСЛОВИЯХ СУЩЕСТВОВАНИЯ

Елинов Н.П.

НИИ медицинской микологии им. П.Н. Кашкина, ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

THE PLANKTONIC AND BIOFILM-STRUCTURAL FORMS OF MICROMYCEDES LIFE IN SEVERAL CONDITION OF EXISTENCE

Yelinov N.P.

Kashkin Research Institute of Medical Mycology, SEI APE SPb MAPE. Saint Petersburg, Russia

Микромицеты в различных условиях жизнеобитания могут находиться либо в одноклеточной форме и взвешенном (суспензионном) состоянии, либо в структурированной плёнкоподобной форме. Наиболее часто микологи имеют дело либо с чистыми культурами в лабораторных условиях, либо с ассоциациями микромицетов или микромицетов с другими микробами, например, бактериями, протозойными и возможными иными микроорганизмами во внешней среде (in vitro) или в макроорганизме(-ах) при патологических процессах (in vivo). Поэтому «биоплёнки» в этих последних случаях представляют собою структурированные сообщества, адгезирующиеся (по англ. adhesion — прилипание) к поверхности и «упакованными» в матриксе экзополимерного материала. Это приобретает особое значение, поскольку в патологических инфекционных процессах у людей и животных биоплёнки играют заметную роль.

В качестве примера назову *Candida* spp., которых обнаруживают в составе нормобиоты у людей, у которых они «сталкиваются» с разными имплантированными биоматериалами и «хозяйскими» структурами макроорганизма, например, протезами, шунтами, эндотрахеальными трубками, различными типами катетеров и др., не только поддерживающими колонизацию, но и обеспечивающими плёнкообразование (на кандидозные катетер-ассоциированные септические инфекции приходится от 7% до 9% из всех подобных случаев катетер-обусловленных других инфекций).

В докладе будут представлены данные по адгезивным характеристикам микромицетов — патогенов и условных патогенов, по архитектонике некоторых биоплёнок, по оценке чувствительности отдельных видов микромицетов в биоплёнках к избранным антимикотикам, а также отдельные генетические характеристики культур микромицетов в составе биоплёнок.
ОЦЕНКА ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ АТИФИНА В ЛЕЧЕНИИ ОНИХОМИКОЗОВ

Жильцова Е.Е., Степанова С.В.
ГОУ ВПО РязГМУ Росздрава, ГУ РОККВД, Рязань, Россия

Онихомикозы — одно из наиболее распространенных заболеваний ногтей грибковой этиологии. В России число больных онихомикозами варьирует от 4,5 до 15 млн. человек, в связи с этим лечение этого заболевания всегда было и остается важной проблемой дерматологии.

Цель работы — оценить эффективность атифина (тербинафин) в лечении онихомикозов, определить сроки клинической и микроскопической иррадикации.

Методы и средства. Под наблюдением находилось 30 больных онихомикозом ногтей пальцев стоп и кистей (22 мужчины и 8 женщин в возрасте от 25 до 67 лет). По социальному статусу — преимущественно военнослужащие и рабочие. Срок заболевания варьировал от 1 года до 27 лет. Диагноз у всех больных был подтвержден микроскопически, у 8 — микробиологически. Больные получали препарат атифин внутрь по 250 мг/сутки. Важной особенностью этого современного противогрибкового средства является его хорошая переносимость атифина при лечении онихомикозов. Срок заболевания варьировал от 1 года до 27 лет. Длительность курса терапии клиническое излечение отмечали у 24 (80%) больных. Курс лечения продолжительностью 3 месяца. До и в процессе лечения больным проводили общий анализ крови, функциональные пробы печени. С целью увеличения интенсивности роста ногтевых пластин на фоне приема атифина назначали цинктерал.

Результаты. После 5-7 дней после начала терапии атифином уменьшалось шелушение на коже стоп и кистей при сопутствующем поражении гладкой кожи; проявления микоза стоп регрессировали через 1,5-2 недели после начала лечения. Клиническое излечение отмечали через 1,5 месяца после начала лечения. В результате 3-х месячного курса терапии клиническое излечение отмечали у 24 (80%) больных. У 6 больных оставались изменения некоторых ногтевых пластин, что было связано с тотальным их поражением. Побочных эффектов при приеме препарата не выявлено. Острительно-рецидивирующие микроскопические исследований на грибы были более всего, получивших лечение. По результатам данного клинического исследования можно говорить о высокой эффективности и хорошей переносимости атифина при лечении онихомикозов ногтей пальцев стоп и кистей.

ВЛИЯНИЕ TNFA И INFα НА ВЗАИМОСДЕЙСТВИЕ БУККАЛЬНЫХ ЭПИТЕЛИОЦИТОВ С CANDIDA ALBICANS

Заславская М.И., Лукова О.А., Макрова Т.В.
Нижегородская государственная медицинская академия, Нижний Новгород

Адгезия C. albicans на слизистых оболочках является процессом, который опосредуется через неспецифические и специфические (рецептор-зависимые) контакты грибов с эпителиоцитами человека. В свою очередь, экспрессия рецепторов на эпителиальных клетках зависит от их функционального состояния и может регулироваться различными гуморальными факторами, в частности — цитокинами. Изучали влияние цитокинов — фактора некроза опухоли (TNFα) и α-интерферона человека (INFα) — на способность буккальных эпителиоцитов к взаимодействию с C. albicans in vitro. В работе использовали тест-культуру C. albicans штамм 601 (коллекция кафедры микробиологии иммунологии Нижегородской государственной медицинской академии). C. albicans выращивали на агаре Сабуро (24 ч, 37 °С). Клетки буккального эпителия получали от здоровых доноров, отмывали забуференным физиологическим раствором (ЗФР). В контроле использовали интактные клетки.

В принципе результаты исследований на грибов были у всех 30 больных, получавших лечение. По результатам данного клинического исследования можно говорить о высокой эффективности и хорошей переносимости атифина при лечении онихомикозов ногтей пальцев стоп и кистей.
сравнению с контролем (p<0,05).

Таким образом, INFα и TNFα способны регулировать адгезивность эпителиоцитов в отношении C.albicans in vitro. Можно предположить, что результат взаимодействия C. albicans с эпителиоцитами in vivo будет зависеть от соотношения различных групп цитокинов, поступающих из микроокружения на разных этапах воспалительного процесса.

АНАЛИЗ ЗАБОЛЕВАЕМОСТИ ДЕРМАТОМИКОЗАМИ И ЧЕСОТКОЙ В ЛЕНИНГРАДСКОЙ ОБЛАСТИ ЗА ПОСЛЕДНИЕ 64 ГОДА
Заславский Д.В., Егорова Ю.С., Оловянишников О.В, Еремина Н.В., Луговец О.Ю., Княжище С.Н.
Ленинобожкожвендиспансер, Педиатрическая медицинская академия, Санкт-Петербург, Россия

Дерматомикозы и чесотка — социально-значимые заболевания и, несомненно, показатели общественного неблагополучия, сопровождающие человечество на протяжении веков.

В данной работе мы попытались установить взаимосвязь уровня заболеваемости в зависимости от происходивших социальных потрясений (война, перестройка, экономический кризис) на протяжении 64 лет; проанализирована заболеваемость дерматомикозами и чесоткой в Ленинградской области по данным Ленинградского областного КВД. Так, на 2008 год заболеваемость микроспорией составила 37,8 на 100 тыс. человек (возросла на 3,6%), трихофитией — 0,1 на 100 тыс. (в 3 раза ниже чем в 2007 г.), чесоткой — 89,1 на 100 тыс. (в 1,3 раза ниже чем за 12 месяцев 2007 г. — 112,9 на 100 тыс.). В 67% случаев микроспорию у детей 0-17 лет регистрировали в организованных коллективах; ее очаговость составила 6,7%.

Высокий уровень заболеваемости чесоткой приходился на 1946 год — 1472 случая на 100 тыс. человек; в 1968 г. — 160 на 100 тыс., в 1994 г. — 326,8 на 100 тыс., в 2003 г. — 114,6 на 100 тыс. Значительное снижение уровня заболеваемости было в 1963 году — 1,9 на 100 тыс. человек и в 1992 г. — 8,2 на 100 тыс.

Самый высокий рост заболеваемости дерматомикозами в динамическом ряду пришёлся на 1950 год — 67,0 случаев на 100 тыс. человек, в 1975 г. — 64,2 на 100 тыс., в 1991 г. — 103,8 на 100 тыс., а наиболее значительное снижение было в 1944 г. — 4,86 на 100 тыс., в 1969 г. — 13,0 на 100 тыс., в 1990 г. — 11,7 на 100 тыс. и в 2001 г. — 5,33 на 100 тыс.

Выводы:
1. За последние три года происходит незначительный рост заболеваемости дерматомикозами — от 35,9 в 2006 году до 37,8 в 2008 году на 100 тыс. населения.
2. Заболеваемость дерматомикозами и чесоткой имеет волнообразное течение.
3. Сохраняются единичные случаи трихофитии.
4. В связи с открытием в последние годы большого количества коммерческих центров, система учета заболеваемости требует корректировки.

ОРОФАРНИГЕАЛЬНЫЙ КАНДИДОЗ ПРИ ВИЧ-ИНФЕКЦИИ
Затолока П.А.
Белорусский государственный медицинский университет, Минск, Беларусь

Дефицит иммунитета при ВИЧ-инфекции обусловливает агезию, колонизацию и инвазию инфекционных агентов в ткани человеческого организма. При этом патологические процессы наиболее часто вызваны условно-патогенной микрофлорой и приводят к развитию оппортунистических инфекций. Орофарингеальный кандидоз (ОФК) (хейлит, ангулярный хейлит, гингивит, глоссит, стоматит, тонзиллит, фарингит) является одним из наиболее распространенных заболеваний у данной группы пациентов.

Цель исследования — определить распространенность орофарингеального кандидоза у ВИЧ-инфицированных лиц, проживающих в городе Минске.

Результаты. В целом по выборке, орофарингеальный кандидоз выявлен у 71 (44%) больного. На первой стадии вирусного иммунодефицита клинически и бактериологически ОФК был подтвержден у 27 (25%) пациентов, второй – у 10 (71%), третьей – у 25 (86%), четвертой – у 9 (100%). Candida albicans обнаружена у 49 (69%) больных.
Кандидозный стоматит выявлен у 56 (79% из всех больных ОФК) пациентов. Наиболее распространенной оказалась эритематозная (атрофическая) форма грибкового стоматита, диагностированная у 24 (43%) из них, псевдомембранозная – у 19 (34%), гиперпластическая – у 8 (14%), эрозивно-язвенная – у 5 (9%).

Выводы:
1. Распространенность орофарингеального кандидоза у ВИЧ-инфицированных г. Минска составила 44%.
2. Candida albicans обнаружена у 69% больных ОФК.
3. Эритематозная форма кандидозного стоматита является наиболее распространенным грибковым процессом орофарингеальной локализации у ВИЧ-инфицированных города Минска.

ИММУНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ КАНДИДОЗНОЙ ИНФЕКЦИИ ПРИ ЯЗВЕННОЙ БОЛЕЗНИ ДВЕНАДЦАТИПЕРСТНОЙ КИШКИ У ДЕТЕЙ
Зиатдинова Н.В.1, Нарыков Р.Х.2, Маланичева Т.Г., Софронов В.В.2
1Казанский государственный медицинский университет МЗ РФ, 2Детская городская клиническая больница №2, г. Казань, Россия

IMMUNOLOGICAL PECULIARITIES OF CANDIDA INFECTION AT ULCEROUS ILLNESS OF CHILDREN’S DUODENUM
1Ziatdinova N.W., 2Narykov R.C., 1Malanicheva T.G., 1Sofronov W.W.
1Kazan State Medical University, 2 Children’s City Clinical Hospital №2, Kazan, Russia

В основе патогенеза инвазивного кандидоза желудочно-кишечного тракта лежат расстройства иммунологических механизмов.

Провели комплексное иммунологическое обследование у 30 детей с язвенной болезнью двенадцатиперстной кишки (ЯБДК), ассоциированной с Candida sp. Контрольную группу составили 29 детей с ЯБДК, без участия ассоцианта – Candida sp. Иммунологическое обследование включало оценку показателей клеточного звена иммунитета (абсолютное и относительное количество CD 3+-Т-лимфоцитов, CD4+, CD 8+, CD 56+, CD 19+-В-лимфоцитов и соотношение CD4+/CD8+), гуморального звена (IgA, IgG, IgM, ЦИК), фагоцитарной активности (спонтанный и стимулированный НСТ-тест, соответственно, 6,2+3,3%, p<0,001 и 40,3+4,8%, p<0,001).

У детей обследуемой группы отмечали снижение абсолютного содержания CD3+-Т-лимфоцитов до 53,1+3,0% (p<0,05), относительного и абсолютного содержания CD4+-Т-лимфоцитов до 53,1+3,0% (p<0,05), относительного и абсолютного содержания CD4+/CD8+ — 0,6+0,09 (p<0,05). При этом наблюдалось повышение экспрессии маркеров активации – лимфоцитов, экспрессирующих рецептор для IL-2 (абсолютное количество CD25+ – 0,53+0,09, p<0,05 и относительное – 31,9+3,2%, p<0,001), антигенов гистосовместимости II класса (HLADR+ — 31,2+3,6%, p<0,001), а также активированных Т-лимфоцитов (CD3+DR – 24,2+3,2%, p<0,05).

При изучении показателей гуморального звена иммунитета выявили снижение уровня IgG – до 10,9+1,9 г/л, p<0,05 и IgA – до 1,38+0,56 г/л, p<0,05 по сравнению с контролем. Отмечали снижение фагоцитарного индекса – до 42,3+7,9% (p<0,001), а также спонтанного и стимулированного НСТ-теста, соответственно, 6,2+3,3%, p<0,001 и 40,3+4,8%, p<0,001.

Таким образом, в основе развития кандидозной инфекции у детей лежат нарушения клеточного звена иммунитета и фагоцитарной активности нейтрофилов.

РОЛЬ CANDIDA SPECIES В ПАТОГЕНЕЗЕ ПЕРСИСТИРУЮЩЕГО АЛЛЕРГИЧЕСКОГО РИНИТА У ДЕТЕЙ
Иванова О.С., Лазарев В.В.
ГОУВПО «Северо-Осетинская государственная медицинская академия Федерального агентства по здравоохранению и социальному развитию», г. Владикавказ, Россия

ROLE OF CANDIDA SPECIES IN PATHOGENESIS OF PERSISTENT ALLERGIC RHINITIS IN CHILDREN
Ivanova O.S., Lazarev V.V.
State Medical Academy of Federal Agency on Public Health and Social Development, Vladikavkaz, North Ossetia, Russia

Аллергические заболевания становятся достаточно серьезной проблемой человечества. По данным официальной статистики, сегодня 30-40% населения земного шара страдает аллергией. Особую тревогу вызывает рост заболеваемости аллергий среди детей.

Сенсибилизация к грибам в развитии аллергического заболевания имеет важное значение, поскольку контакт с аллергенами грибов, как и с аллергенами домашней пыли, происходит практически постоянно, способствуя формированию персистирующих форм заболевания.

Цель исследования — определить роль Candida albicans в развитии персистирующего аллергического ринита.

Материалы и методы. У 48 детей с персистирующим аллергическим ринитом проводили исследование «микробного пейзажа» кишечника и носоглотки, а также определяли специфические IgE и IgG методом МАСТ в сыроватке крови.

Результаты. Установили, что, помимо клинических проявлений персистирующего аллергического ринита, у 12% обследованных нами детей имелись признаки атопического дерматита, у 25% — бронхиальной астмы, у 1%
— хронической рецидивирующей крапивницей. C. albicans выделили в 25% случаев из кишечника и в 5% случаях — из носоглотки. Уровень грибковой сенсибилизации по IgE за-
висимому типу был значительно ниже уровня бытовой, пыльцевой, эпидермальной и пищевой сенсибилизации, а со-
держание специфических антител класса IgG к грибко-
вым аллергенам Aspergillus, Candida было выше.

Вывод. Персистирующий аллергический ринит не-
редко протекает в сочетании с другими атопическими за-
болеваниями. В его развитии значительную роль играют
плесневые и дрожжевые грибы. Определение специфи-
ческих антител класса IgG позволяет определить прогноз за-
болевания.

БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ НЕКОТОРЫХ ИЗБРАННЫХ ASPERGILLUS SPP.

Игнатьева С.М.1, Бабенко Г.А.1, Гурьева А.С.2, Галкина П.К.3,
Спиридонова В.А.1.

1НИИ Медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПб МАПО;
2Санкт-Петербургский государственный университет, Санкт-Петербург.

Цель исследования — изучить биологические свойства
метаболитов некоторых микромицетов рода Aspergillus,
имеющих медицинское значение.

Материалы и методы. Объектами исследования
были 4 вида Aspergillus из Российской коллекции грибов
НИИ Медицинской микологии: A. fumigatus шт. ВКПГУ – 1168,
A. flavus шт. ВКПГУ-1071, A. niger шт. ВКПГУ – 1085,
A. nidulans шт. ВКПГУ – 44/227. Глубинное культиви-
рование выбранных штаммов грибов проводили на жидкой пи-
шеварительной среде Чапека-Докса с 2% глюкозы в течение
30 мин., а в нативном растворе определяли величину рН, содержание белка, фосфолипазную (чашечный метод с 2%
лецитином) и протеолитическую активности (колориме-
трический метод с 2% казеином). Наличие галактоманнана
отделяли центрифугированием при 3000 об/мин. в течение
от 2,5 до 9,5 обладал
ром (4 типа) ферментов с широким диапазоном действия
от 2,5 до 9,5 обладал
ром (4 типа) ферментов с широким диапазоном действия
и A. fumigatus, которые один из всех
видов аспергиллов секретировал щелочную протеазу с
оптимумом активности при рН 9,5. Наличие у A. fumigatus
ферментов с широким спектром действия, по-видимому,
обусловливают его способность гидролизовать многие
субстраты. У A. flavus выявлены 2 кислые протеазы с опти-
мумом активности при pH 2,5; 5,5 и одну нейтральную про-
теазу с оптимумом активности при pH 7,2. Активности 3-х
протеаз у A. niger были максимальными при pH 2,5; 5,5 и
7,2, в то время как A. nidulans секретировал только 2 кис-
lые протеазы (при pH 2,5 и 5,5) и не продуцировал ней-
тральные протеазы.

Выводы. Глубинное культивирование Aspergillus spp.
оказалось хорошей моделью для изучения динамики
метаболизма возбудителей аспергиллезной инфекции и
понимания ее патогенетических механизмов. В процес-
се клеточного роста штаммы Aspergillus spp. отличались
свообразием развития, выделяя в питательную среду
биологически-активные вещества полисахаридной и бел-
ковой природы. На ранних сроках выращивания грибов
(2 сутки) синтезировался внеклеточный галактоманнан,
с 3 суток начиналась секреция фосфолипаз, а с 7 суток —
протеаз. Виды Aspergillus spp. характеризовались продук-
цией индивидуального набора протеаз, их активностью
в различных диапазонах pH и временем максимальной
секреции. Щелочная протеаза была видоспецифична для
A. fumigatus.
ЧАСТОТА ВЫДЕЛЕНИЯ CANDIDA SPP. ОТ НОВОРОЖДЕННЫХ И ИХ БИОЛОГИЧЕСКИЕ СВОЙСТВА

Каплин Н.Н., Ивахнюк Т.В., Ивахнюк Ю.П.
Сумской государственный университет, медицинский институт, г. Сумы, Украина

Цель – мониторинг видового состава и чувствительности к антимикотикам грибов рода Candida, выделенных от новорожденных.

Материалы и методы. Мы исследовали мазки из зева, пупка, носа и кожи новорожденных. Выделение и окончательную идентификацию грибов проводили по общепринятым методикам. Чувствительность определяли дискодиффузионным методом.

Результаты. Изучили 48 штаммов Candida spp., выделенных от доношенных новорожденных (1 группа), и 35 штаммов – от недоношенных (2 группа). У детей 1 и 2 групп высоко доминирующим видом была C. albicans (56,3% и 51,4% соответственно). 29,2% штаммов, выделенных от детей 1 группы, были C. tropicalis, 8,2% – C. parapsilosis, 6,3% – C. krusei. Среди штаммов, выделенных от детей 2 группы, к субдомinantной группе отнесено C. parapsilosis (20%), C. tropicalis (17,2%), C. krusei (11,4%). В ассоциациях со S. aureus и S. epidermidis, проявляющими выраженные патогенные свойства, Candida spp. выделяли из зева в 35%, из пупочной ранки – 16,3%, из носа – 9,6% случаев. Среди исследуемых штаммов Candida spp., к нистатину были чувствительны 25,3%, к леворину – 17,6%, амфотерицину В – 86,7%, флуконазолу – 75,9%, кетоконазолу – 35,5%. Анализируя тесты, характеризующие патогенность выделенных Candida spp., мы получили следующие результаты: среди штаммов C. albicans высокоадгезивные свойства имели 72,2% штаммов, выделенных от детей 2 группы, и 22,2% штаммов, выделенных от детей 1 группы. Средней адгезивной активностью обладали C. tropicalis: 71,4% штаммов от детей 1 группы и 66,7% – от детей 2 группы. Наименьшей адгезивной активностью обладали 66,7% штаммов C. krusei, выделенных от детей 1 группы, и 75% – от детей 2 группы. Кроме того, среди Candida spp. гемолитической активностью обладали 20,8% штаммов, выделенных от детей 1-й группы, и 34,3% – от детей 2 группы.

В результате проведенных исследований выявили, что Candida spp. с более выраженным патогенным свойством выделяли от недоношенных новорожденных детей, и в ассоциации со стафилококками грибы сохраняли чувствительность к современным антимикотикам.
стенными антимикотиками кандидоз влагалища может являться симптомом вторичного иммунодефицита на фоне ВИЧ высокого онкогенного риска и требует дополнительных лечебных и профилактических мероприятий.

КЛИНИКО-ИММУНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ МИКРОСПОРИИ
Касымов О.И., Касымов А.О.
Кафедра дерматовенерологии, Институт последипломной подготовки медицинских кадров, Душанбе, Таджикистан

CLINICAL AND IMMUNOLOGICAL FEATURES OF MICROSPORIA
Kasymov O.I., Kasymov A.O.
Department of dermatovenereology, Institute of postgraduate education of medical specialists, Dushanbe, Tadjikistan

Цель — изучение клинико-иммунологических особенностей микроспории.

Объекты и методы. Под наблюдением находились 69 больных детей в возрасте от 4 до 15 лет (мужчин – 43, женщин – 26). У 28 (40,6%) больных отмечали поражение только волосистой части головы, у 20 (29,0%) — волосистой части головы и гладкой кожи, у 21 (30,4%) — только гладкой кожи. Длительность заболевания колебалась от нескольких дней до 2 месяцев. Диагноз микроспории был подтвержден микроскопически.

Результаты. Выявили некоторые клинические особенности микроспории. При поражении волосистой части головы типичную клиническую картину отмечали только у 14 (29,2%) больных, у 34 больных наблюдалась многоочаговая поражения: у 17 — от 4 до 7 очагов, у 12 — от 8 до 12, у 5 — до 20 и более. Очаги поражения в подавляющем большинстве случаев были мелкими размеров (от горошины до 1-2 см в диаметре), с незначительной эритемой и шелушением. Трихофитоидную форму микроспории волосистой части головы установили у 8 больных, инфильтративную — у 4, инфильтративно-нагноительную — у 3.

Из 21 больного с поражением только гладкой кожи, у троих было 2-3 очага поражения, у 6 — от 4 до 6, у 7 — от 7 до 10, у 5 — от 11 до 20 и более. У 15 больных имели место яркие эксудативно-воспалительные очаги, у 2 — инфильтративно-нагноительные, у 6 — эритематозно-сквамозные. Размеры очагов колебались от 1-2 до 8-10 см в диаметре и больше. Увеличение регионарных лимфатических узлов выявлено у 20 из 69 больных.

При иммунологических исследованиях установили, что у больных зоонозной микроспорией с длительностью заболевания более 1 месяца, по сравнению с данными в контрольной группе, было снижено общее количество СДЗ-лимфоцитов (Р<0,02) и их СД8-субпопуляции (Р<0,05). Количество IgG превышало данные в контрольной группе в 1,4 раза, IgM — в 1,5, IgA — снижено в 1,3 раза. Уровень ЦИК был повышен у 69,4% больных при сниженной активности сукинат-дегидрогеназы и альфа-глицерофосфатдегидрогеназы в лейкоцитах крови. Нарушения были более выражены в группе больных с сочетанным поражением волосистой части головы и гладкой кожи и при распространенном поражении гладкой кожи.

ЭПИДЕМИОЛОГИЯ ОНИХОМИКОЗА В Г. ДУШАНБЕ
Касымов О.И., Салимов Б.М., Касымов А.О.
Кафедра дерматовенерологии, Институт последипломной подготовки медицинских кадров, Душанбе, Таджикистан

EPIDEMIOLOGY OF ONYCHOMYCOSIS IN DUSHANBE
Kasymov O.I., Salimov B.M., Kasymov A.O.
Department of dermatovenereology, Institute of postgraduate education of medical specialists, Dushanbe, Tadjikistan

Цель — изучение заболеваемости онихомикозом взрослого населения г. Душанбе.

Объекты и методы. Подворным целевым медицинским осмотром было охвачено 2935 жителей в возрасте от 18 до 86 лет. Мужчин было 1312 (44,7%), женщин — 1623 (55,3%).

Результаты. Выявили 1263 дерматологических больных (43% от всех осмотренных жителей). Грибковые заболевания обнаружили у 611 больных (у 48,4% от общего числа больных с кожной патологией, или 20,8% от общего количества обследованного населения г. Душанбе). Мицеллы стоп определили у 397 больных (65% от всего количества грибковых пациентов, или 31,4% от общего числа больных с патологией кожи, или 13,5% от всех осмотренных жителей). Из 397 больных микозами стоп мужчин было 225 (56,7%), женщин — 172 (43,3%).

У 102 (25,7%) больных выявили онихомикоз (16,7% от общего числа больных микозами, 3,5% от всего количества осмотренных, 8,1% от всех дерматологических больных). Средний возраст больных онихомикозом составил 44,8 ± 0,5 лет. Из 225 мужчин, больных микозами стоп, онихомикоз страдал 57, то есть 25,3%, или 4,3% от общего числа осмотренных мужчин; 45 (26,2%) из 172 женщин с микозами стоп болели также онихомикозом, что составляет 2,8% среди всех осмотренных женщин. Из приведенных данных видно, что заболеваемость онихомикозом у мужчин в популяции была в 1,5 раза выше, чем у женщин. Заболеваемость онихомикозом в различных возрастных группах была разной. В возрастной группе от 18 до 40 лет она составляла 2,9% (среди мужчин — 3,6%, среди женщин — 2,3%), в возрастной группе от 41 до 60 лет — 4,0% (соответственно, 4,9% и 3,2%), старше 60 лет — 5,8% (7,9% и 4,3%). Соотношение уровня заболеваемости онихомикозом в указанных возрастных группах в популяции составляла 2 : 1,5 : 1; среди мужчин — 2,2 : 1,4 : 1, среди женщин — 1,9 : 1,3 : 1.

У больных онихомикозом наиболее часто наблюдали дистаптико-латеральную форму заболевания, которую диагностировали у 55 (53,9%) пациентов, проксимальную — у 19 (18,6%), тотально-дистрофическую — у 20 (19,6%), поверхностно-белую — у 8 (7,8%).
MICROMYCETES AND BIODETERIORATION OF HYDROCARBONS AND POTENTIAL AGENTS OF MYCOSES IN THE OIL POLLUTED REGIONS

Kireyeva N.A., Klimyna I.P., Grigoriadi A.S., Yakupova A.B.
Bashkir State University, Ufa, Russia

В настоящее время нефть и продукты ее переработки стоят на первом месте среди опасных загрязнителей окружающей среды, что влечет за собой опасность прямого и опосредованного воздействия на здоровье человека. Посадки в почву, нефтяные углеводороды пополняют запасы питательных веществ, доступных почвенным микроорганизмам, чем стимулируют их развитие. Почвенные микроскопические грибы (микромицеты) преобладают среди посевных изолятов и представляют собой одну из основных составляющих микробного сообщества почвы. Они участвуют в минерализационных процессах, и некоторые виды обладают выраженной углеводородокисляющей способностью, что имеет большое значение для экологических исследований в области рекультивации нефтезагрязненных почв.

Цель данной работы — характеристика микоценозов загрязненных почв, оценка углеводородокисляющей активности и выявления возможных опасностей, связанных с их перестройкой в результате «нефтяного стресса».

Исследования проводили на образцах серой лесной почвы, загрязненной нефтью в результате разливов и в районах нефтяных скважин. Выделение микроскопических грибов проводили по общепринятой методике посева почвенных микромицетов и представляют собой одну из основных составляющих микробного сообщества почвы. Они участвуют в минерализационных процессах, и некоторые виды обладают выраженной углеводородокисляющей способностью, что имеет большое значение для экологических исследований в области рекультивации нефтезагрязненных почв.

Результаты. Споры микромицетов могут сохранять жизнеспособность в течение 1 года. На среде с биоцидом (0,1%) отмечали рост как контрольных, так и тестируемых изолятов. Скорость роста всех тестируемых изолятов на среде с биоцидом превышала скорость роста контрольных изолятов (на 50%-100%). Также прорастание спор тестируемых изолятов на среде с биоцидом было значительно выше, чем у контрольных изолятов.

Таким образом, показано, что повторное использование данного биоцида может не привести к гибели или ин-
гибированию развития микроскопических грибов на экс- понатах, а лишь способствовать адаптации микромицетов к данному биоциду.

АТОПИЧЕСКИЙ ДЕРМАТИТ И СЕНСИБИЛИЗАЦИЯ К ЛИПОФИЛЬНЫМ ДРОЖЖАМ РОДА MALASSEZIA

Кливитская Н.А., Соколова Т.В.
Государственный институт усовершенствования врачей МО РФ, Москва, Россия

ATOPIC DERMATITIS AND LYPHOHYLIC MALASSEZIA SPP. SENSIBILIZATION

Klivitskya N.A., Sokolova T.V.
State Institute of Postgraduate Physician Education, Moscow, Russia

Цель исследования – изучение особенностей течения атопического дерматита при наличии сенсибилизации к липофильным дрожжам рода Malassezia.

Объекты и методы. Обследовано 60 больных атопическим дерматитом (АД) в возрасте от 6 до 37 лет. Мужчин и женщин поровну. Контрольная группа (98 человек) набра- на для сравнения результатов кожных аллергических проб с использованием сертифицированного набора allergenов (Болгария). Тестирование проводили с использованием стандартизированных реактивов. Сенсибилизацию к Candida albicans определяли методом внутрикожных аллергических проб на приборе UniCap-100 (Phadia, Швеция) с ис- пользованием стандартных препаратов. Сенсибилизацию к Malassezia spp. выявили у 2/3 пациентов АД в зеве, у 9,6% мужчин – из уретры. Больных АД подразде- лили на 2 группы: 1 группа – наличие сенсибилизации к Candida albicans, у 94,9% против 71,4% (р<0,05). Обострение АД в связи с приемом антибиотиков зарегистрировали только у боль- ных, сенсибилизированных к Malassezia (23,1%). Степень тяжести АД по шкале SCORAD была в 1,6 раза выше, чем у лиц женского пола, причем на протяжении всей жиз- ни. Были получены достоверные различия в показателях общей частоты встречаемости ПБ и микоза стоп у организованных (88,24%) и неорганизованных (19,16%) лиц.
СЛУЧАЙ УСПЕШНОГО ЛЕЧЕНИЯ БОЛЬНОЙ С РАСПРОСТРАНЕННОЙ ФОРМОЙ АБДОМИНАЛЬНОГО АКТИНОМИКОЗА

Козлова О.П., Чернопятова Р.М., Мирзабалаева А.К., Климко Н.Н.
НИИ медицинской микологии им. Н.П. Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

CASE OF SUCCESSFUL TREATMENT OF WOMEN WITH ABDOMINAL ACTINOMYCOSIS

Kozlova O.P., Chernopyatova R.M., Mirzabalaeva A.K., Klimko N.N.
Kashkin Research Institute of Medical Mycology, SEI APE SPb MAPE, Saint Petersburg, Russia

ОБЪЕКТЫ И МЕТОДЫ. В микологической клинике СПб МАПО наблюдали больную М., 45 лет, которая при поступлении предъявляла жалобы на диарею, чередующуюся с запорами, тянувшие боли в нижних отделах живота. Анамнез заболевания: считает себя больной в течение 5 месяцев, когда появились первые признаки недомогания: выраженная слабость, отсутствие аппетита, периодически повышение температуры до 38 °С, потеря массы тела на 9 кг в течение 30 дней.

В связи с обнаружением опухолевидного образования размером 6×8 см, в амбулаторных условиях пациентке было выполнено ультразвуковое исследование (УЗИ) органов малого таза, на котором обнаружили инфилтрацию стенки мочевого пузыря, очаг патологической эхогенности с бугристыми контурами размером 5,5×4,3 см. С подозрением на опухоль сигмовидной кишки больная была направлена в хирургический стационар.

В экстренном порядке пациентке была произведена обструктивная резекция сигмовидной кишки, резекция подвздошной кишки, илеотрансверзостомия. При гистологическом исследовании послеоперационного материала обнаружили в глубоких отделах стенки кишечника многочисленные актиномикотические друзья. Гистологический диагноз подтвердил в НИИ медицинской микологии им. Н.П. Кашкина, куда пациентка М. была направлена для дальнейшего лечения.

Анамнез жизни: родилась в 1963 году. Менархе с 14 лет, менструальный цикл регулярный. Половая жизнь в браке. Двое срочных родов, без осложнений, один медицинский аборт без осложнений. В 2002 году с целью контрацепции было введено внутриматочное контрацептивное средство (ВМК), которое находилось в полости матки в течение 6,5 лет (ВМК был удален в женской консультации на догоспитальном этапе). Из сопутствующих заболеваний — диффузный токсический зоб в сочетании с аутоиммунным тиреоидитом. Тиреотоксикоз рецидивирующий II степени тяжести. Аутоиммунная офтальмопатия I-II степени.

Данные объективного осмотра при поступлении в НИИ медицинской микологии им. Н.П. Кашкина: общее состояние удовлетворительное. Сознание ясное. Гемодиурез — 81% норма. Гистологический диагноз подтверждён в НИИ медицинской микологии им. Н.П. Кашкина, куда пациентка М. была направлена для дальнейшего лечения.

Таким образом, обращает на себя внимание, что ПБ в большом проценте сочетаются с микозом стоп, и только комплексная терапия приносит положительный результат. Рецидивов ПБ и микоза стоп у данной группы больных не выявлено.
КЛИНИЧЕСКИЕ ФОРМЫ МИКОГЕННОЙ АЛЛЕРГИИ
У ЖИТЕЛЕЙ ПОМЕЩЕНИЙ, ПОРАЖЕННЫХ МИКРОМИЦЕТАМИ

Козлова Я.И., Аак О.В., Чилина Г.А., Богомолова Т.С., Чернopyatova Р.М., Ларина Л.С., Васильева Н.В., Климко Н.Н.
НИИ медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

Микромицеты являются одними из наиболее распространенных в окружающей среде источников аллергенов. Известно, что проживание в помещениях, пораженных плесневыми микромицетами, неблагоприятно для больных с IgE-опосредованными аллергическими заболеваниями. Клинические формы микогенной аллергии у жителей помещений с визуальными признаками плесневого поражения изучены недостаточно.

Материалы и методы. С целью выявления микогенной аллергии было проведено клинико-диагностическое обследование 108 жителей. Основную группу составили 86 человек (из них 70 человек страдали IgE-опосредованными аллергическими заболеваниями), проживающих в 68 помещениях с визуальными признаками плесневого поражения. Средний возраст жителей — 33,1±14,8 лет; мужчин — 37, женщин — 49.

Контрольную группу составили 22 пациента с IgE-опосредованными аллергическими заболеваниями, которые проживали в 18 помещениях без визуальных признаков плесневого поражения. Средний возраст — 36,1±15,5 лет; мужчин — 6, женщин — 16.

Всем жителям проводили общий клинический анализ крови, биохимическое исследование крови, общий анализ мочи, микроскопическое исследование мокроты, микрокопическое исследование мазков из носовых ходов. Инструментальные методы обследования включали электрокардиографию, ультразвуковое исследование бронхиальной полости, исследование функции внешнего дыхания. Для выявления обратимости бронхиальной обструкции выполняли пробу с бронхолитиком (салбутамол). По показаниям применяли рентгенографию органов грудной клетки, придаточных пазух носа, при подозрении на аллергический бронхолегочный аспергиллез выполняли компьютерную томографию органов грудной клетки. Уровень специфических IgE выявляли с помощью MAST-панелей к грибковым, бытовым и эпидермальным аллергенам. При определении степени тяжести бронхиальной астмы руководствовались критериями, указанными в «Глобальной стратегии лечения и профилактики бронхиальной астмы» (GINA, 2006).

Результаты. У 50 (58,1%) жителей помещений, пораженных плесневыми микромицетами, выявили специфические IgE к грибковым аллергенам, тогда как в контрольной группе — только бытовую и эпидермальную сенсибилизацию (p<0,05).

Основными клиническими формами микогенной аллергии были: бронхиальная астма (38%), аллергический ринит (34%), атопический дерматит (24%) и аллергический бронхолегочный аспергиллез (4%). При дальнейшем анализе аллергических заболеваний жителей помещений с визуальными признаками плесневого поражения установили, что у больных с микогенной сенсибилизацией частота аллергического ринита и атопического дерматита была достоверно выше, чем у больных без микогенной сенсибилизации (89,5% vs. 10,5% и 70,6% vs. 29,4%, соответственно, p<0,05).

Кроме того, повышенная концентрация спор микромицетов в воздухе жилых помещений влияет на тяжесть течения бронхиальной астмы. Частота персистирующей БА тяжелой и средней степени тяжести была достоверно выше в группе жителей помещений, пораженных микромицетами, по сравнению с больными, проживающими в помещениях без визуальных признаков плесневого поражения (69,0% vs. 25,0%, p<0,05). Среди больных персистирующей БА, проживающих в помещениях без визуальных признаков плесневого поражения, больных с легким течением заболевания было достоверно больше (75,0%, p<0,05).

Выводы. Повышенная концентрация спор микромицетов в воздухе и визуальные признаки плесневого поражения в жилых помещениях способствуют развитию микогенной аллергии, основными клиническими формами которой являются бронхиальная астма, аллергический ринит, атопический дерматит и аллергический бронхолегочный аспергиллез.
СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В ПЕЧЕНИ МЫШЕЙ ПРИ МИКОБАКТЕРИАЛЬНО-КАНДИДОЗНОМ МИКСТ-ГРАНУЛЕМАТОЗЕ

Козяв М.А.¹, Шкурпуй В.А.¹, Хорошевская Я.А.¹
¹ГУ Научный центр клинической и экспериментальной медицины СО РАМН, ²ГУ ВПО Новосибирский государственный медицинский университет Росздрава, Новосибирск, Россия

STRUCTURAL CHANGES IN THE LIVER OF MICE IN CASE OF MYCOBACTERIO-CANDIDOUS MIXT-GRANULOMATOSIS

Kozayer M.A.¹, Shkurupy V.A.¹, Horoshevskaya Y.A.¹
¹ Scientific Centre of Clinical and Experimental Medicine SD RAMS, ²Novosibirsk State Medical University, Novosibirsk, Russia

Цель работы — исследование структурных преобразований в печени у мышей с туберкулезно-кандидозным микст-гранулематозом.

Объекты и методы. Миши линии C57Bl/6 были разделены на 4 группы: контрольная, инфицированная вакциной БЦЖ, инфицированные C. albicans, с микобактериально-кандидозной микст-инфекцией. Гранулематозное воспаление моделировали однократным интратератонеальным введением вакцины БЦЖ в дозе 0,5 мг и 2,5·10⁹ микробных тел C. albicans на мышь в изотоническом растворе NaCl. Материал получали через 3, 10, 28, 56, 120 суток с момента инфекционирования. Объектом исследования служил печень, которая содержит наибольший компартмент системы мионуклеарных фагоцитов, что дает возможность наблюдать гранулемы в высоких концентрациях.

Количество гранулем во всех группах животных нарастало к 56 суткам с последующим резким снижением к 120 суткам эксперимента. При этом в группе с микст-инфекцией она была меньше, чем суммарное количество гранулем в группах с кандидозной и БЦЖ-инфекцией на 24,3% (56 сутки) и 23,8% (120 сутки).

Размер гранулем нарастал во всех группах животных на 24,3% (56 сутки) и 23,8% (120 сутки).

В гранулемах во всех группах животных, начиная с 56 суток с последующим снижением к 120 суткам эксперимента, и был наибольшим в группе мышей с микст-инфекцией — на 13,6% (56 сутки) и 9,8% (120 сутки), чем в группах с кандидозной и БЦЖ-инфекцией.

В гранулемах во всех группах животных, начиная с 56 суток эксперимента, преобладали эпителиоидные клетки, содержащие на 120 сутки в группе микст-гранулематозом составило 55,15%, в группе с БЦЖ-инфекцией — 53,31%, с кандидозной инфекцией — 48,04%.

К 120 суткам эксперимента в гранулемах формируются коллагеновые волокна, объемная плотность которых в группе мышей, инфицированных C. albicans, составила около 2%, с БЦЖ-инфекцией и с микст-гранулематозом — около 0,5%.

Таким образом, для микобактериально-кандидозного микст-гранулематоза характерно меньшее количество гранулем и преобладание в них эпителиоидных клеток, что, возможно, сопряжено с уменьшением хемиаттрактантного потенциала в гранулемах и более активной «диссоциацией» макрофагальных клеток из этих гранулем.

РЕЗУЛЬТАТЫ ДЕРМАТОСКОПИИ ПИГМЕНТНЫХ ОБРАЗОВАНИЙ У БОЛЬНЫХ PITYRIASIS VERSICOLOR

Колонтая И.Я., Анчупане И.С., Милтинш А.П.
Латвийский университет, Рига, Латвия

Распространенность меланомы за последние годы резко увеличивается во всем мире, поэтому своевременное обследование родников в профилактических целях является важным моментом в практической медицине. Несмотря на то, что меланома составляет только 2% от общего количества злокачественных образований кожи, смертность от нее составляет 75%. Одним из важнейших факторов риска является ультрафиолетовое облучение. У пациентов, которые подвергались длительному и регулярному негативному влиянию ультрафиолетового облучения (чаще всего — посетители соляриев), очаги поражения поверхностного кератомикоза — Pityriasis versicolor — клинически наиболее выражены, что может повлиять на результаты дерматоскопии.

Это явилось основанием обследования пигментных образований у больных Pityriasis versicolor с целью выявления степени риска, по сравнению с пациентами, у которых не выявлено Malassezia furfur. Практически в диагностике пигментных образований применяют закон ABCD — оценку ассиметрии границ, цвета, диаметра. У больных Pityriasis versicolor имеются место коричневые шелушащиеся пятна, которые в процессе болезни теряют пигментацию, и, впоследствии, видны как пятна с пониженной пигментацией. Одним из критериев оценки результатов дерматоскопии является изменение цвета образования. Если пигментное образование расположено на участках кожи, пораженных Pityriasis versicolor, это теоретически может изменить результаты дерматоскопии. Исследования с использованием дигитального дерматоскопа Heine delta и анализ статистических данных (prizma4) позволили сделать клинически важные выводы. Дерматоскопически неизмененная эпидерма имеет жёлтый цвет, в то время как эпидерма с акантом — желто-коричневый или серо-коричневый, что объясняется накоплением пигмента в увеличенном слое кератиноцитов. Участки с выраженным гиперкератозом имеют бледно-желтоватый цвет.
В зависимости от глубины расположения меланина, дерматоскопически наблюдали различные цвета. В поверхностных слоях эпидермиса меланин выглядит черным, на уровне эпидерма-дермы – темно-коричневым или желто-коричневым. Меланин в папилярной дерме выглядит серо-голубым, в ретикулярной дерме – темно-синим. Вариации этих цветов объясняются разницей в длине отражаемых волн. У синего цвета длина волны короче, и поэтому дисперсия его в тканях лучше, чем у цвета с более длинными волнами (например, красные тона, которые относятся к теплым тонам). В отличие от красного цвета, синий в тканях больше отражается и меньше абсорбируется.

Таким образом, по интенсивности цвета можно судить о происхождении пигментного образования и его локализации. В стадии регрессии меланины могут быть белого цвета, что объясняется образованием шрамоподобной ткани. Красный цвет пигментных образований чаще всего связан с усилением кровоснабжением в расширенных сосудах или с кровотечением в образовании. Интерес вызывает тот факт, что в пигментных образованиях кожи, поражённой Malassezia furfur, должны быть изменения в виде гипер- или гипопигментации, что должно индуцировать фретацию длины волн, которую можно определить с помощью дерматоскопии.

Цель работы – определить дерматоскопическими исследованиями имеется ли повышенный риск диспазии или малигнизации пигментных образований на коже, пораженной Malassezia furfur, у больных Pityriasis versicolor, по сравнению с пигментными образованиями на здоровой коже.

Материалы и методы. Обследованы 17 больных Pityriasis versicolor и 17 здоровых людей в возрасте от 18 до 50 лет. С помощью дерматоскопии, используя Heine delta дерматоскоп, обследовали 34 пациента с пигментными образованиями. В 80% случаев родники у пациентов были с рождения. В контрольной группе все пациенты указывали на загар в умеренных дозах, что позволило подтвердить диагноз. В группе больных Pityriasis versicolor, выявленные случаи заболевания, что сочетается с приемом антибактериальных препаратов, что является одним из таких препаратов, который, кроме того, обладает способностью к глубокому проникновению и длительному накоплению в коже. В результате действия бензотиафена, содержащегося в сертаконазоле, происходит прямое повреждение клеточной стенки, утечка цитоплазмы и гибель клетки гриба. Препарат в субингирирующей концентрации нарушает процесс превращения макерелларии в мицелиальную форму, являющуюся одной из форм грибов, ведущих к патогенности. Сертаконазол («Залайн») является одним из таких препаратов, который, кроме того, обладает способностью к глубокому проникновению и длительному накоплению в коже. В результате действия бензотиафена, содержащегося в сертаконазоле, происходит прямое повреждение клеточной стенки, утечка цитоплазмы и гибель клетки гриба. Препарат в субингирирующей концентрации нарушает процесс превращения Candida albicans в мицелиальную форму, являющуюся ключевой в патогенезе кандидоза (??). Цель исследования — изучение эффективности и переносимости крема, содержащего сертаконазол.

Материалы и методы. В исследование было включено 36 больных с микробиологически подтвержденным диагнозом «кандидозный баланопостит». Все мужчины находились в возрасте от 19 до 45 лет и имели несколько половых партнеров. Манифестация клинических проявлений была связана: у 16 (44%) мужчин — с половым контактом, у 14 (39%) — с приемом антибактериальных средств, у 6 (17%) — с употреблением алкоголя и переохлаждением. Клиническая картина характеризовалась гиперемией, наличием...
мелких папул и эрозий, белесоватого творожистого налета на головке полового члена и крайней плоти. Среди субъективных ощущений преобладали зуд и неприятный запах в области высыпаний.

В качестве антимикотического препарата мы использовали «Залаин» (сертаконазол) в форме крема, который применяли 1-2 раза в день в течение 2-3 недель.

Результаты. Разрешение клинических проявлений и уменьшение субъективных ощущений было уже на 2-3 день использования у 29 (81%) пациентов. По окончании курса лечения, у всех 36 пациентов наблюдали клиническое и этнологическое выздоровление. В течение проводимой терапии побочных действий не выявили.

Таким образом, препарат сертаконазол в форме крема обладает выраженным противогрибковым действием и может быть использован в лечении кандидозных баланопоститов.

ОЦЕНКА ЭФФЕКТИВНОСТИ КОМПЛЕКСНОЙ ПАТОГЕНЕТИЧЕСКОЙ ТЕРАПИИ ОНИХОМИКОЗОВ У ЛИЦ ПОЖИЛОГО ВОЗРАСТА

Коржева О.В.
ГУЗ «Вологодский областной кожно-венерологический диспансер», Россия

EFFICIENCY OF ONYCHOMYCOSIS COMPLEX PATHOGENETIC THERAPY IN THE ELDERLY AGE’ PERSONS

Korzheva O.V.
SEI «Vologodsky Regional Skin-venereal dispensary», Russia

По данным ВОЗ, дерматомикозами поражено 15-25% всего населения мира. Статистически, онихомикоз — заболевание преимущественно пожилых людей, поскольку периферическое кровообращение и иммунная защита в этой возрастной группе лиц в значительной мере нарушены вследствие кардиоваскулярных заболеваний, неврологических, эндокринных расстройств и болезней обмена веществ, предрасполагающих к грибковой инфекции. Распространенность онихомикоза в этой группе достигает 60% и более. Зачастую на практике мы встречаемся не только с возрастными ограничениями к применению системных антидикотиков, но и с различной сопутствующей соматической патологией у данных пациентов, ограничивающей или полностью исключающей их назначение, следовательно, возникает необходимость разработать комплексную патогенетическую терапию для лиц пожилого возраста, имеющих противопоказания к применению этой группы препаратов.

Методы исследования. На базе ГУЗ «Вологодский областной кожно-венерологический диспансер» обследовано 100 больных в возрасте от 60 до 74 лет с различными формами онихомикозов. Пациенты были разделены на 3 группы: 1 группа — больные, получающие только местную терапию в виде удаления пораженной ногтевой пластины с помощью диамантовых или кремнеземных фрез (30 человек); 2 группа — пациенты, получающие местную терапию в виде удаления пораженной ногтевой пластины с помощью сегментарной аппаратной обработки алмазными фрезами скалером, а также наружную терапию в виде пениетрирующих растворов антидикотиков в димексиде (30 человек); 3 группа — больные, получающие ту же местную терапию, что и пациенты второй группы, но с дополнительным назначением сосудистых препаратов, вегетокорректоров, витаминов. Контрольную группу составили пациенты с онихомикозом в возрасте от 25 до 45 лет, получающие терапию, назначеннную пациентам третьей группы.

Комплексная патогенетическая терапия больных онихомикозом включает в себя: назначение вегетокорректоров (грандаксин — по ½ таблетки в сутки в течение 2-х месяцев), антиаритмических средств (никотиновая кислота — от 1,0 до 5,0 мл и обратно внутримышечно №10 через день, а далее 5-тинафилла никотината — по 1 табл. 2 раза в сутки в течение 2 месяцев), антиоксидантов (масляный раствор витаминов А и Е) — авит (по 1 пакету 2 раза в сутки — 2 месяца); при артериальной недостаточности: пентоксифиллина (трендил) — по 100 мг 2 раза в сутки; при венозной недостаточности: детралекс — по 500 мг 2 раза в сутки в течение 30 дней, аспирин-кардио (тормобАСС) — по 50 мг 2 раза в сутки в течение 30 дней. Оценку эффективности проводили через 12 месяцев от начала лечения.

Результаты. В первой группе больных показатель клинической излеченности составил 31,4%, микологической излеченности — 46,5%; во второй группе — 43,6% и 66,3% соответственно; в третьей группе — 59,3% и 76,8%; в четвертой (контрольной) группе — 64,4% и 81,4%.

Выводы. Таким образом, применение сосудистых препаратов и вегетокорректоров в комбинации с наружной патогенетической терапией онихомикозов позволяет увеличить эффективность лечения у лиц пожилого возраста, имеющих противопоказания к применению системных антидикотиков.
Цель — изучить содержание Candida spp. в биотопе ротовой полости у детей с декомпенсированной формой кариеса.

Объекты и методы. Микробиологическое исследование ротовой жидкости и антилизоцимной активности выделенных микробов проведено у 40 детей в возрасте от 10 до 17 лет, имеющих декомпенсированную форму кариеса (группа 1), у 20 пациентов с компенсированным карцесом (группа 2) и у 20 здоровых детей (группа 3).

Результаты. Нарушение микробоценоза полости рта в виде избыточного роста условно-патогенных бактерий отмечали у всех больных 1 группы. У них чаще, чем во 2 и 3 группах, наблюдался переход в доминирующую группу микроорганизмов дрожжеподобных грибов рода Candida (58%, 37,5% и 12%, χ2=5,58, р<0,05). При этом у 47% грибов отмечали усиление антилизоцимной активности (АЛА), что расценивали, как один из факторов патогенности. После местного лечения иммуномодулятором «Гепон» радиально изменялось как содержание Candida spp. (5,15±0,61 и 1,34±0,51 lgКОЕ/ мл, р<0,05), так и АЛА (43% и 12%), что свидетельствует о взаимосвязи между состоянием микробоценоза и иммунокомпетентности внутриэпителиальной иммунной системы ротовой полости.

Заключение. Иммуномодулятор «Гепон» обладает отчетливым антимикотическим эффектом. Механизм влияния «Гепона» на АЛА Candida spp. нуждается в изучении.

АКТИВНОСТЬ ЦЕЛЛОБИОЗОЛИПИДОВ ПРОТИВ ПАТОГЕННЫХ ВИДОВ ДРОЖЖЕЙ

Дрожжи Pseudozyma fusiformata секретируют (2-О-3-гидроксигексаноил-β-D-глюкопиранозил-(1→4))-(6-О-ациетил-β-D-глюкопиранозил-(1→6)-2,15,16-тригидроксигексадекановую кислоту, а Cryptococcus humicola — (2,3,4-О-триацетил-β-D-глюкопиранозил-(1→4)-(6-О-ациетил-β-D-глюкопиранозил-(1→6)-2,16-дигидроксигексадекановую кислоту. Оба целлобиозолипида обладают ангирифунгальной активностью при кислых значениях рН среды. Указанные соединения действуют против возбудителя криптококкоза — Cryptococcus neoformans (Filobasidiella neoformans), клетки которого погибают при концентрации обоих целлобиозолипидов 0,02 мг/мл. Для патогенных дрожжей рода Trichosporon, T. asahii и T. faecalis минимальная эффективная концентрация гликолипидов, вызывающая гибель не менее 90% клеток, составила 0,05-0,07 мг/мл, тогда как для аскомицетных дрожжей, возбудителей кандидозов (Candida albicans, C. tropicalis, C. parapsilosis, C. viswanathii и Clavispora lusitaniae) — 0,1-0,2 мг/мл. С использованием дрожжей Cryptococcus terreus и Saccharomyces cerevisiae в качестве модельных объектов, показано, что оба целлобиозолипида обладают мембраноповреждающим действием: под их воздействием происходит выход из клеток АТФ, ионов калия и фосфата.
Аллергический бронхолегочный аспергилиз: шесть лет ремиссии и вновь обострение

Куleshов А.В.1, Митрофанов В.С.2
1НИИ пульмонологии МЗ и СР РФ, Москва; 2НИИ медицинской микологии им. П.Н. Кашкина Санкт-Петербургской медицинской академии последипломного образования, Россия

Allergic bronchopulmonary aspergillosis: six year of remission and exacerbation again

Kuleshov A.V.1, Mitrofanov V.S.2
1Research Institute of Pulmonology, Moscow; 2Kashkin Research Institute of Medical Mycology of SEI APE SPb MAPE, Saint Peterburg, Russia

Аллергический бронхолегочный аспергилиз (АБЛА) — комбинированная аллергическая реакция в ответ на колонизацию дыхательных путей плесневыми грибами Aspergillus fumigatus. Хроническое аллергическое воспаление приводит к ремоделированию дыхательных путей, развитию бронхоэктазов, пневмофиброза и формированию дыхательной недостаточности. Диагностические критерии АБЛА включают: клинику бронхиальной астмы, инфильтраты в легких, эозинофилию в крови и мокроте, критерии АБЛА включают: клинику бронхиальной астмы, ванну дыхательной недостаточности. Диагностические критерии АБЛА включают: клинику бронхиальной астмы, инфильтраты в легких, эозинофилию в крови и мокроте, высокоуровень общего IgE, наличие сенибилизации к A. fumigatus по кожным тестам или по наличию специфических IgE к A. fumigatus — высокий уровень общего IgE, наличие сенибилизации к A. fumigatus также был высоким.

Пациентка Ю., 15 лет, впервые обратилась в клинику в 2002 году с жалобами на кашель с умеренным количеством мокроты, затрудненное дыхание. Инфильтрат имел нечеткие контуры, но достаточно однородную структуру. Антибактериальная терапия не дала результата, поэтому предположили микотическое поражение. При поступлении в клинику в легких прослушивались сухие свистящие хрипы. В периферической крови выявили эозинофилию — 7-9% (абс. кол-во 546-720 в мм3). Уровень общего IgE был более 1000 ед/мл, уровень специфических IgE и IgG к A. fumigatus также был высоком. Кожная проба (прик-тест) с антигеном A. fumigatus — положительная по типу ГНТ. При компьютерной томографии грудной клетки от 6.11.02 г., выполненной в спиральном режиме, дополненной тонкими срезами в алгоритме высокого разрешения и исследованием в положении на животе, обнаружили полость в С6 правого легочного размером 4,5x2,0x0,4 см, с неравномерно утолщеными стенками на фоне инфильтративных изменений окружающей легочной ткани. Содержимое полости имело округлую форму, довольно четкие контуры, однородную структуру, диаметр — 0,4 см. При перемене положения тела отмечали симптом «погремушки» (перемещение содержимого в полости), характерный для аспергилиземы.

Было проведено лечение преднизолоном из расчета 0,5 мг на кг — 2 недели, затем — через день с последующей постепенной отменой в течение 2 месяцев, а также итраконазолом — 200 мг в сутки, 3 месяца. В результате лечения получена положительная клиническая динамика: разрешение инфильтрации и исчезновение аспергилиземы на контрольной КТ, прекращение приступов удышья. Далее в течение 6 лет никаких симптомов заболевания пациентка не отмечала, за медицинской помощью не обращалась.

С начала декабря 2008 г. у больной состояние ухудшилось: появился кашель с комковатой мокротой, приступы удышья, одышка. На КТ от 17.02.09 г. в заднем сегменте верхней доли правого легкого обнаружили инфильтрат и толстостенную многокамерную воздушную полость с непчеткими неровными контурами, связанную бронхом. Общий IgE — 1169 ед/мл, титры специфических IgE и IgG к A. fumigatus — высокие, что позволяет говорить об обострении аспергилиземы.

Изменичивость клинических штаммов Aspergillus fumigatus, выделенных от больных туберкулезом легких

Кулько А.Б.1, Марфенина О.Е.2, Иванова А.Е.2
1Департамент здравоохранения города Москвы1, Россия; Московский государственный университет им. М.В. Ломоносова2, Россия

Цель исследования — сравнительный анализ микр- и макроморфологических характеристик штаммов Aspergillus fumigatus Fres., выделенных от пациентов из клиники туберкулеза при диагностике бронхолегочного микоза.

Методы: посев различного диагностического мате-
ВЛИЯНИЕ CANDIDA-
БАКТЕРИАЛЬНЫХ АССОЦИАЦИЙ
НА РАЗВИТИЕ ХРОНИЧЕСКОГО
АДЕНОИДИТА У ДЕТЕЙ
Кунелская В.Я., Мачулин А.И.
ГУЗ «Московский научно-практический Центр оториноларингологии» ДЗ Москвы, Россия.

INFLUENCE OF CANDIDA-BACTERIAL ASSOCIATIONS IN DEVELOPMENT OF CHRONIC ADENOIDITIS AT CHILDREN
Kunelskaya V.YA., Machulin A.I.
GUZ «Moscow Scientifically-Practical Centre of Otorhinolaringology» Department of Moscow Public Health, Russia, Moscow

При выборе лечебной тактики хронического аденоидита большинство специалистов не учитывают этиологическую значимость грибковой биоты в патогенезе данного заболевания. В диагностическом алгоритме в большинстве случаев не используют микологическое исследование мазков, взятых из носоглотки, у детей с хроническим аденоидитом. Это приводит к неправильному выбору тактики лечения, а именно — использованию антимикотических препаратов, физиотерапевтических методов лечения, а также лазеротерапии.

Цель исследования — разработка лечебно-диагностического алгоритма при хроническом аденоидите грибковой этиологии у детей.

Объекты и методы. Мы провели обследование и лечение 35 детей с хроническим воспалением глоточной миндалины в стадии обострения (12 мальчиков и 23 девочки в возрасте от 3 до 13 лет). В исследуемой группе детей выполняли общеклиническое исследование, осмотр ЛОР-органов с применением эндоскопической техники, а также бактериологическое и микологическое исследование мазков, взятых из носоглотки с аденоидных вегетаций.

Результаты. Из 35 детей у 27 в посевах с глоточной миндалины выявляли бактериобиоту, характерную для бактериального аденоидита, с преобладанием стрептококков и стафилококков. У 8 детей выявляли грибково-бактериальную ассоциацию — Candida spp. со стрептококками и стафилококками. При выполнении эндоскопического эпифарингоскопии у всех детей визуализировали отек лиофидной ткани, сглаженность лакун, а также слизисто-гнойный секрет. У 8 детей на глоточной миндалине определяли мелкочешуйчатые беловатые вкрапления. У детей с грибковым аденоидитом мы применяли системные антимикотики из группы азолов. После проведенного курса лечения в повторных мазках на грибковой биоте не выявлено.

Выводы. Для правильной постановки диагноза и выбора адекватной терапии у детей с хроническим аденоидитом необходимо использование эндоскопической техники, а также проведение бактериологического и микологического исследований мазков, взятых с глоточной миндалины. При выявлении больных с микотическим поражением глоточной миндалины в комплексную терапию необходимо включать антимикотики системного действия.

ЛЕЧЕНИЕ И ПРОФИЛАКТИКА
ОТОМИКОЗА НА СОВРЕМЕННОМ
УРОВНЕ
Кунелская В.Я., Шадрин Г.Б.
ГУЗ «Московский научно-практический Центр оториноларингологии» Департамент здравоохранения Москвы Директор — профессор А.И. Крюков

THE TREATMENT AND PREVENTION MAINTENANCE OTOMYCOSIS ON MODERN LEVEL
Kunelskaya V.YA., Shadrin G.B.
GUZ «Moscow Scientifically-Practical Centre of Otorhinolaringology» Department of Moscow Public Health, Russia, Moscow

Удельный вес отомикозов среди отитов другой этиологии составляет 18,6%, а в детском возрасте — 26,3%, при этом наружный грибковый отит встречается в 63%, гриб-
ковый средний отит — в 17%, грибковое поражение послеоперационной полости среднего уха — в 20%.

В настоящее время проблема рациональной противогрибковой терапии отомикозов не теряет актуальности. Большое количество препаратов — антимикотиков расширяет возможности лечения отомикоза. Необходим рациональный выбор антимикотика, обладающего наименьшим токсическим и наибольшим терапевтическим действием. В целом, антимикотическая лекарственная терапия должна основываться на результатах лабораторных микологических исследований чувствительности грибов к применяемым антимикотикам. Но часто, особенно при остром формах грибкового заболевания, выбор препарата осуществляется эмпирически, т.к. микромицеты идентифицируют не сразу, а тесты могут занять длительное время.

Для местного применения при плесневом поражении наружного уха и послеоперационной полости наиболее эффективны нафтифин, тербинафин и нитрофунгин, а при кандидозном поражении уха – нафтифин, клотримазол, тербинафин, натамицин. При лечении грибкового среднего отита необходимо применение комбинации противогрибковых препаратов местного и системного действия. При кандидозном поражении наиболее эффективны флуконазол и итраконазол, при плесневых микозах – итраконазол и тербинафин. Курс лечения флуконазолом составляет 10 дней по 50-100 мг/сут; итраконазолом – 14 дней по 100 мг/сут, тербинафином – 16 дней по 250 мг/сут.

Поскольку грибковые заболевания склонны к рецидивированию, необходимо динамическое диспансерное наблюдение за больными с грибковыми поражениями уха и, при показаниях, проведение профилактических курсов противогрибкового лечения.

По результатам тестирования больных отомикозом с использованием указанных выше лекарственных средств, мы делаем вывод об эффективной элиминации грибов-возбудителей заболевания, что подтверждается нормализацией клинической картины и отрицательными результатами микологических исследований.

РЕЗУЛЬТАТЫ ТЕСТИРОВАНИЯ СЫВОРОТК КРОВИ НА НАЛИЧИЕ АНТИТЕЛА К TRICHOPHYTON RUBRUM В ИФА С ИСПОЛЬЗОВАНИЕМ МОНОКЛОНАЛЬНЫХ АНТИТЕЛА (МКА)

Кухар Е.В., Арыкпаева У.Т., Акимбаева А.К., Шапиева Ж.Ж., Ахметова Б.Н.

НИИ биотехнологии Казахского агротехнического университета им. С. Сейфуллина, г. Астана, Республика Казахстан

TESTING RESULTS OF BLOOD SERA IN PRESENCE OF ANTIBODIES TO TRICHOPHYTON RUBRUM IN ELIZA WITH USING OF MONOCLONAL ANTIBODIES (MABS)

Saken Seifullin Kazakh Agro Technical University Biotechnology Scientific Research Institute, Astana, Kazakhstan Republic

Руброфития — грибковое заболевание ладоней, подошвенной поверхности стоп и ногтей пальцев человека. Особое распространение имеют руброфитии, связанные с поражением ногтей, которые распространены среди всех групп населения, но особенно — среди пожилых людей старше 60 лет, некоторых представителей профессиональных групп, у лиц с пониженным иммунитетом. В последнее время появилась тенденция к развитию генерализованных форм заболевания на фоне значительных иммунологических нарушений, тяжелой сопутствующей патологии, стертых клинических признаков, что затрудняет диагностику.

Цель исследований — определение диагностической ценности МКА, полученных к белковому антигену возбудителя руброфитии T. rubrum.

Методы и средства. Проведены испытания 8 сывороток крови (4 женщины, 3 мужчины) с подозрением на руброфитоз с целью выявления специфических антител. Проводили культуральную диагностику, постановку РА в микроварианте (РМА) и «сэндвич» вариант dot-ИФА.

Результаты. Клинически у 75% обследованных устанавливали изменение ногтевой пластины или гиперкератоз стоп. По результатам выделения чистой культуры, рост характерных колоний отмечали в 25% случаев, причем в одной чашке наблюдали рост T. rubrum + дрожжи. При постановке РМА, у 66,7%, больных с отсутствием клинических признаков получили отрицательный результат, у одного больного выявили титр антител 1:128 (12,5%), у 37,5% титр антител составил 1:2 (гиперкератоз, незначительные изменения ногтевой пластины). При наличии ярко выраженных клинических признаков титр антител был от 1:2 (12,5%) до 1:256 (28,6%). В «сэндвич» варианте dot-ИФА в сыворотке крови больной К., 1941 г.р., с диагнозом «микоз стоп и они-
хомикоз», подтвержденным культуральной диагностикой, выявили титр антител 1:12800 и в РМА – 1:256. Отсутствие клинических признаков, в «сэндвич» dot-ИФА выявили титры специфических антител от 1:400 до 1:3200. Титр антител 1:800 считаем диагностическим. Прямую корреляционную связь наличия титров антител отмечали при характерном изменении ногтевых пластинок.

ХАРАКТЕРИСТИКА МОНОКЛОНАЛЬНЫХ АНТИТЕЛ К ПОЛИСАХАРИДНОМУ АНТИГЕНУ ДЕРМАТОМИЦЕТА TRICHO PHYTON VERRUCOSUM

Кухар Е.В., Муканов К.К., Киян В.С., Сауленова Д.Ж.
НИИ биотехнологии Казахского агротехнического университета им. С. Сейфуллина, г. Астана, Республика Казахстан

В Казахстане, также как и во всем мире, из-за повсеместно отмечаемого нарушения экологического равновесия, некорректного применения антибиотиков и других лекарственных препаратов, широкое распространение среди населения получили дерматомикозы различной локализации. Высокая контагиозность дерматомикозов, различные осложнения и трудности в лечении делают актуальной проблему совершенствования средств и методов их ранней диагностики.

Цель исследований — иммунохимическая характеристика моноклональных антител к полисахаридному антигену T. verrucosum.

Методы и средства. В качестве антигена для иммуннизации мышей линии BALB/c использовали полисахаридный комплекс (пептидогалактоманнан), выделенный из мицелия T. verrucosum методом Westphal O., Jann K. (1967 г.). Гибридизацию клеток миеломы Х 63/Ag 8.653 со спленоцитами иммунных мышей проводили по методу V. Oi et L. Herzenberg.

Результаты. После серии гибридизаций клеток миеломы Х 63/Ag 8.653 со спленоцитами иммунных мышей получили 1 клон гибридом 1С7, охарактеризованный как стабильно синтезирующий МКА заданной специфичности. Секреция МКА гибридомами достигала по белку в культуральной среде 40 мкг/мл, в асцитной жидкости – 4 мг/мл. Титры иммуноглобулинов в культуральной среде составили 1:256, в асцитной жидкости – 1:12800. Полученные МКА принадлежат к иммуноглобулинам класса G и по данным иммуноблотинга специфически реагируют с белками молекулярной массой 30 кДа. Это свидетельствует о том, что они специфичны к белковой части пептидогалактоманнана T. verrucosum (молекулярная масса — 64 кДа). В непрямом варианте иммуноферментного анализа моноклональные антитела выявляют полисахаридный антиген T. verrucosum в разведении 1:6400.

Выводы. Таким образом, МКА, полученные к полисахаридному антигену T. verrucosum, являются иммуноглобулинами класса G, специфически связываются с белковой частью пептидогалактоманнана с молекулярной массой 30 кДа; выявляют антиген в разведении 1:6400.

ИММУНОФЕРМЕНТНЫЕ МЕТОДЫ ВЫЯВЛЕНИЯ АНТИГЕНОВ АЛЛЕРГЕННЫХ И ТОКСИГЕННЫХ ГРИБОВ РОДОВ ASPERGILLUS SPP., ALTERNARIA SPP., PHOMA SPP., MUCOR SPP., FUSARIUM SPP. В ПРОДУКТАХ ПИТАНИЯ И БЫТОВЫХ МАТЕРИАЛАХ

Лебедин Ю.С.1, Грачев А.В.2
1 ООО “Хема”, г. Москва; 2 САНКТ-ПЕТЕРБУРГ State University, биолого-почвенный факультет, кафедра биохимии, Россия

Цель — проведение мониторинга содержания антител аллергенов и токсигенных грибов в продуктах питания и бытовых материалах.

Методы. Содержание антител аллергенов и токсигенных грибов в продуктах питания и бытовых материалах определяли с помощью полученных нашей компанией иммуноферментных тест-систем на основе кроличьих антисывороток, специфичных к антигенам родов Aspergillus spp., Alternaria spp., Phoma spp., Mucor spp., Fusarium spp. в продуктах питания и бытовых материалах.

Результаты. На содержание антител проанализировано основные группы продуктов питания: хлебобулочные изделия, алкогольная продукция, детское питание, кондитерские, кисломолочные изделия. Выявлены группы продуктов, наиболее подверженные грибковой контаминации. Проведено сравнительное исследование зараженно-
ОЦЕНКА СПОСОБНОСТИ ФОРМИРОВАТЬ БИОПЛЕНКУ ГРИБАМИ РОДА CANDIDA, ВЫДЕЛЕННЫМИ ИЗ РАЗНЫХ ИСТОЧНИКОВ

В научной литературе практически отсутствует информация о применении чувствительных методов количественной оценки способности Candida spp. к формированию биопленки. С нашей точки зрения, такую информацию можно получить при контроле за изменением состояния поверхности в процессе выращивания микроорганизма.

Цель настоящей работы — оценка способности Candida spp. формировать биопленки по изменению краевого угла смачивания ее поверхности.

Объекты и методы. В работе использовали 10 штаммов C. albicans и 5 штаммов C. krusei, выделенных из разных биотопов больных ожогового центра ОКБ №1. Тюмень и инфекционного отделения ОКБ г. Ханты-Мансийск, в качестве эталона использовали музейный образец штамма C. albicans ATCC 24433. Биопленку получали в бульоне Сабуро на поверхности стеклянных пластинок размером 2,5×2,5 см. Кинетику образования биопленки изучали по изменению краевого угла смачивания ее поверхности. Полученные результаты обрабатывали в полулогарифмических координатах, строили кривую ln(Q) = f (t), по тангенсу угла наклона к начальному участку кривой находили удельную скорость образования биопленки данного штамма (μb, ч⁻¹).

При определении удельной скорости образования биопленки выявили, что значения μb для C. albicans изменялись в пределах от 1,9·10⁻² до 4,1·10⁻² ч⁻¹. Значительно лучше образовывали биопленку клетки C. krusei — данный показатель у них изменялся в пределах от 4,0·10⁻² до 4,6·10⁻² ч⁻¹. Заметим, что все исследованные штаммы C. albicans, независимо от источника выделения, имели разные удельные скорости образования биопленки.

Результаты. В данной работе сделана попытка оценить способность штаммов Candida spp. к формированию биопленки. При использовании методики определения удельной скорости роста биопленки удалось выявить статистически достоверные различия в способности штаммов Candida spp. к формированию биопленки. Простота выполнения методики предопределяет ее доступность для любой лаборатории в целях изучения процесса биопленкообразования на любой поверхности, в том числе — на материалах, применяемых для изготовления медицинского оборудования и имплантов.

АДГЕЗИЯ И РЕЗИСТЕНТНОСТЬ КАК КРИТЕРИИ ОЦЕНКИ ПАТОГЕННОГО ПОТЕНЦИАЛА КЛИНИЧЕСКИХ ШТАММОВ CANDIDA ALBICANS

ADHESION AND RESISTANCE AS ESTIMATION' CRITERIA OF PATHOGENIC POTENTIAL FOR CANDIDA ALBICANS CLINICAL STRAINS

В данной работе сделана попытка оценить способность штаммов Candida spp. к формированию биопленки. Простота выполнения методики предопределяет ее доступность для любой лаборатории в целях изучения процесса биопленкообразования на любой поверхности, в том числе — на материалах, применяемых для изготовления медицинского оборудования и имплантов.

Результаты. В данной работе сделана попытка оценить способность штаммов Candida spp. к формированию биопленки. При использовании методики определения удельной скорости роста биопленки удалось выявить статистически достоверные различия в способности штаммов Candida spp. к формированию биопленки. Простота выполнения методики предопределяет ее доступность для любой лаборатории в целях изучения процесса биопленкообразования на любой поверхности, в том числе — на материалах, применяемых для изготовления медицинского оборудования и имплантов.

Широкое применение в клинической практике противогрибковых препаратов привело к появлению резистентных к ним штаммов грибов C. albicans. Антимикотики, обеспечивая избирательный фунгицидный эффект, воздействуют, в основном, на клеточную стенку грибов, что приводит к появлению резистентных к ним штаммов. Широкое применение в клинической практике противогрибковых препаратов привело к появлению резистентных к ним штаммов грибов C. albicans. Антимикотики, обеспечивая избирательный фунгицидный эффект, воздействуют, в основном, на клеточную стенку грибов, что приводит к появлению резистентных к ним штаммов. Результаты. В данной работе сделана попытка оценить способность штаммов Candida spp. к формированию биопленки. При использовании методики определения удельной скорости роста биопленки удалось выявить статистически достоверные различия в способности штаммов Candida spp. к формированию биопленки. Простота выполнения методики предопределяет ее доступность для любой лаборатории в целях изучения процесса биопленкообразования на любой поверхности, в том числе — на материалах, применяемых для изготовления медицинского оборудования и имплантов.
устойчивы к противогрибковым препаратам -менее 15%) показана связь между уровнем адгезии штамма и его устойчивости к различным видам антимикотиков. Так, у штаммов, устойчивых к антимикотикам, средний уровень адгезии (37%) почти в 4 раз превышал уровень чувствительных штаммов (9,6%). Следует отметить, что среди чувствительных ко всем антимикотикам штаммов имелась группа штаммов (около 23%), средний уровень адгезии которых достигал 16-27%, в зависимости от места локализации, при этом у больных были выраженные признаки кандидоза. В то же время, некоторые устойчивые к антимикотикам штаммы, выделенные от больных после ранее проведенного успешного противогрибкового лечения, проявили адгезивную способность в 2-3 раза ниже уровня адгезии основной группы штаммов.

Выводы. Патогенность штаммов C. albicans, как сочетание ряда факторов, не может быть оценена только по одному из критериев, например, по уровню чувствительности к антимикотикам. Определение адгезивных свойств может оказаться достаточно надежным и удобным инструментом для оценки патогенного потенциала штаммов и прогнозирования развития грибковой инфекции.

РАЗРАБОТКА И ПРЕДВАРИТЕЛЬНЫЕ ИССЛЕДОВАНИЯ НОВОГО АНТИМИКОТИЧЕСКОГО СРЕДСТВА НА ОСНОВЕ ШТАММА БАКТЕРИЙ BACILLUS SUBTILIS

Лукманова К.А.1, Галимзянова Н.Ф.1, Мелентьев А.А.1, Актуганов Г.Э.2, Мухамадеева О.Р.1, Киреева Р.М.1, Салихова Н.Х.1

1Башкирский государственный медицинский университет Росздрава, Уфа; 2Институт биологии Уфимского научного центра РАН, Уфа; 3Республиканский кожно-венерологический диспансер, Уфа, Республика Башкортостан, Россия

В настоящее время актуальной проблемой является поиск и разработка новых эффективных и безопасных антимикотических средств либо в качестве альтернативы имеющимся синтетическим препаратам, либо для применения в комплексной терапии дерматомикозов. Одним из таких средств можно считать биологические препараты на основе бацилл-антагонистов в виде гелевой лекарственной формы.

В исследованиях, проведенных нами ранее, были изучены антимикотические и токсикологические свойства штамма B. subtilis ИБ-54 из коллекции Института биологии УНЦ РАН, оказавшиеся перспективными для разработки на его основе соответствующей опытной лекарственной формы.

Цель данной работы состояла в доклинических испытаниях полученного препарата на модели дерматомикоза у белых мышей.

Объекты и методы. В качестве основы препарата использовали загуститель карбопол (Ultres 21) с оптимизированными по составу добавками, включающей жидкую культуру бактерий (тип G≥10⁶ KOE/г геля). На лабораторных животных была воспроизведена модель зоофильного дерматомикоза с использованием в качестве инфицирующего агента Trichophyton gypseum. В течение срока наблюдения (30 дней) в группах, получавших профилактическое лечение исследуемым препаратом и «Экзодерилом», больных животных не выявляли. Болевший животный подразделяли на три группы: группу 1 (контроль), где животные продолжали получать гелевую основу без B. subtilis ИБ-54; группы 2 и 3, в которых мышей лечили с применением испытуемого препарата и «Экзодерилом», соответственно.

Результаты. В группах, получавших лечение препаратом на основе B. subtilis ИБ-54 и экзодерилом, на 21-е сутки наступило излечение всех животных, тогда как в 1 группе больные животные оставались до 30 дней.

На основании полученных результатов можно считать, что разработанное средство, по крайней мере, не уступает по эффективности известным синтетическим препаратам, и может быть перспективным объектом для проведения более детальных исследований и клинических испытаний.

ДЕЙСТВИЕ ПРЕПАРАТА «ДЕРИНАТ» НА СИСТЕМУ «CANDIDA ALBICANS — БУККАЛЬНЫЕ ЭПИТЕЛИОЦИТЫ»

Лукова О.А., Махрова Т.В., Заславская М.И.

Нижегородская государственная медицинская академия, Нижний Новгород, Россия

WORKING AUT AND PRELIMINARY TRAIL OF THE NEW ANTIMYCOTIC REMEDY ON BASE OF BACTERIAL STRAIN BACILLUS SUBTILIS

Lukmanova K.A.1, Galimzianova N.F.1, Melentyev A.I.1, Aktuganov G.E.2, Mukhamadeeva O.R.1, Kireeva R.M.1, Salihova N.H.1

1The Bashkir State Medical University of Roszdrav, Ufa; 2Biology of Ufa Research Center of RAS; 3The Republic Dermatovenerologic Dispensary, Ufa, Republic of Bashkortostan, Russia

В работе использовали тест-культуру C. albicans штамм ИБ-54 из коллекции Института биологии Уфимского научного центра РАН, оказавшиеся перспективными для разработки на его основе соответствующей опытной лекарственной формы.

Предрасполагающим фактором развития орального кандидоза является снижение местного иммунитета слизистых оболочек. В нашей работе мы исследовали влияние иммуномодулятора — препарата «Деринат» — на реактивность буккальных эпителиоцитов в отношении C. albicans.

В работе использовали тест-культуру C. albicans штамм 601 из коллекции кафедры микробиологии и иммунологии Нижегородской государственной медицинской академии. Клетки буккального эпителия получали от здоровых доноров, трижды отмывали (40 г, 5 мин.) забуференным физиологическим раствором (ЗФР) и готовили взвесь с

EFFECT OF «DERINAT» ON THE SYSTEM «CANDIDA ALBICANS — BUCCAL CELLS»

Lukova O.A., Makhrova T.V., Zaslavskaya M.I.

Nizhny Novgorod Medical State Academy, Nizhny Novgorod, Russia
концентрацией 10^6 кл/мл. Суспензию
C. albicans (10^7 кл/мл) инкубировали (30 мин., 37 °С) с буккальными эпителиоцитами в разных объемах (0,5 мл) в ЗФР. Эпителиоциты отмывали от несвязавшихся
C. albicans, из осадка клеток готовили мазки. Подсчитывали количество
C. albicans, за- крепившихся на одном эпителиоцисте. Определяли средний уровень искусственной колонизации после просмотра 100 эпителиоцитов (канал/эпителиоцит). В эксперименте эпителиоциты подвергали обработке раствором препарата «Деринат» (ЗАО ФП «Техномедсервис»; 0,025%, 30 мин., 37 °С) до-, во время и после контакта буккальных клеток с
C. albicans. В контроле использовали интактные эпителиоциты.

Прединкубация буккальных клеток с раствором препарата «Деринат» приводила к достоверному снижению адгезии
C. albicans на эпителиоцитах в 1,5±0,5 раз по сравнению с контролем (p<0,05). Добавление препарата «Деринат» к смеси
C. albicans и буккальных эпителиоцитов во время их совместной инкубации также приводило к снижению адгезии в системе в 1,5±0,5 раза (p<0,05). В то же время, внесение препарата «Деринат» к эпителиоцитам после их прединкубации с
C. albicans не влияло на уровень искусственной колонизации. (p>0,05).

Таким образом, препарат «Деринат» способен снижать адгезивность эпителиоцитов в отношении
C. albicans, но не приводит к десорбции уже прикрепившихся
C. albicans на буккальных клетках. Резонно предполагать, что данный препарат может быть использован для неспецифической иммунопрофилактики орального кандидоза у пациентов с атопическим дерматитом. Результаты. У 59 (35,8%) из 165 больных отмечали полное рассасывание кожно-патологического процесса, исчезновение зуда, отсутствие рецидивов, у 67 (41,02%) – удовлетворительное рассасывание кожно-патологического процесса (исчезновение инфильтрации, лихенификации), уменьшение зуда. В этой группе больных наблюдали снижение количества рецидивов у 45 (67,2%) человек, тогда как у остальных 39 (23,6%) отмечали исчезновение зуда при сохранении незначительных эритематозно-сквамозных высыпаний на коже шеи, подколенной ямки. Однако обострение кожно-патологического процесса у этих пациентов во время рецидива заболевания имело легкий характер.

Таким образом, гипосенсибилизирующая активная имmunотерапия является высокоэффективным методом у больных с атопическим дерматитом и может быть применена в качестве профилактики заболевания.

THE REMOTHE RESULTS OF HYPOSENSIBILIZATING AKTVE IMMUNOTHERAPY OF PATIENTS WITH ATOPIC DERMATITIS AND MYCOGEN SENSIBILIZATION

Mavllyanova Sh.Z.

Research Institute of Dermatology & Venerology, Ministry of Public Health, Republic of Uzbekistan

Цель наших исследований — разработка патогенетической терапии орофарингеального кандидоза у иммунокомпрометированных больных на основе изучения микобиоты и гуморального звена местного иммунитета слизистой оболочки рта.

Материал и методы. Под наблюдением находились 96 иммунокомпрометированных больных в возрасте от 18 до 58 лет: 74 — с гемобластозами, 15 — с акантолитической пузьрчаткой и 7 — с лимфомой кожи. Всем пациентам выполняли микологические исследования биосубстрата слизистой оболочки рта (микроскопическое и куль-

Результаты. У 71 из 74 больных с гемобластозами (95,9%), у 13 из 15 больных (86,6%) с пузьрчаткой и у 7 (100%) больных с лимфомами кожи был выявлен кандидоз слизистой оболочки полости рта.

На основании проведенных иммунологических исследований показано подавление секреторного IgA на фоне комбинированного вторичного иммунодефициентного состояния клеточного и гуморального звеньев иммунитета. Наиболее выраженные признаки местной иммунодепрессии были зарегистрированы у больных с гемобластозами. Также отмечали депрессию местного цитокинового статуса (ИЛ-4, ИЛ-6) на фоне антимикотической терапии 7-14 дней во время базисной терапии.

С целью повышения эффективности лечения КПР у иммунокомпрометированных больных, нами разработан метод лечения, заключающийся в назначении человеческого рекомбинантного интерферона интраназально (5 капель 4-5 раз в день) для торможения клеточного и гуморального звеньев иммунитета.

Следует отметить, что состояние местного иммунитета не корректировалось на фоне приема только антимикотиков системного действия. При исследовании местного иммунитета (SIgA) на фоне антимикотической терапии наблюдалось снижение секреторного IgA на 1,3 раза (P<0,05) по сравнению с данными до лечения, что давало обоснование целесообразности назначения иммунокорректирующей терапии.
с чувствительностью, а также с возрастающей резистентностью к наиболее часто используемым системным антимикотикам.

Придерживаясь в своей клинической практике научно обоснованных рекомендаций, в Центре урогенитальных инфекций Университетских клиник ИГМУ мы предпочитаем лечить острый ВВК местными препаратами, из которых в последние годы наиболее часто используют полинен–полиеновый антимикотик натамицин («Пимафуцин»). Наш выбор мы обосновываем основными характеристиками препарата: его фунгицидным действием, широким спектром антигрибковой активности, отсутствием устойчивости к нему Candida spp. Кроме того, натамицин — единственный антимикотик, разрешенный к применению у беременных с первого триместра беременности.

В результате проведенного лечения субъективные симптомы (зуд, жжение, болезненное мочеиспускание) исчезали на 3-5 день, симптомы вульвовагинита — на 8 день, вагинита — на 10 день. Микробиологическая эффективность препарата была достаточно высокой и практически не различалась в двух группах пациенток — беременных и небеременных: при остром неосложненном ВВК она составила, соответственно, 94,0% и 96,2%, при остром осложненном ВВК — 85,7% и 87,1%, при хроническом рецидивирующем ВВК — 88,6% и 89,9%.

На фоне увеличения случаев развития устойчивости грибов Candida spp. к антимикотикам имидазолового и триазолового рядов, полинен–полиеновый антимикотик натамицин сохраняет достаточно высокую активность в отношении возбудителей ВВК. Присоединение пероральной формы этого препарата, воздействующей на дрожжеподобные грибы в просвете кишечника, у пациентов с осложненными формами острого ВВК, а также с ХРВВК, безусловно, повышает эффективность лечения, так как способствует ликвидации важного в патогенетическом отношении очага кандидозной инфекции экстрагенитальной локализации.

Наряду с антимикотиками, разрешенными к применению у беременных с первого триместра беременности, для лечения ВВК может быть использован ряженый моносахарид — натамицин, разрешенный к применению у беременных с первого триместра беременности. Рядом исследователей показано, что натамицин обладает выраженной активностью в отношении Candida albicans, C. guilliermondii, C. krusei, C. parapsilosis, C. glabrata, Candida spp., полу-
натурации при 94 °С — 1 мин., отжига при 36 °С — 1 мин., элонгации при 72 °С — 2 мин., далее достройка цепей при 72 °С — 10 мин. ПЦР-продукт подвергали электрофорезу в агарозном геле: для RAPD-анализа с приверем JWWF использовали 1,2% гель, для остальных — 2%.

Результаты и обсуждение. При анализе картины RAPD для 17 клинических изолятов Candida albicans показано, что все четыре приверма JWWF, RP2, RP4-2 и R4 дают отличающуюся картины генетического профиля для разных штаммов, что позволяет различать изолятов разного происхождения друг от друга. Поэтому RAPD-анализ с данными привермами можно использовать в эпидемиологических исследованиях Candida spp. Картина RAPD, получаемая с помощью приверма JWWF, существенно различалась у разных видов Candida spp.: каждый вид имел свое индивидуальное расположение стабильных мажорных полос, легко выявляемых визуально на агарозном геле. Это позволяет использовать данный вариант RAPD-анализа для быстрого определения видовой принадлежности штаммов в пределах рода Candida.

Выводы. Анализ RAPD с привермами JWWF, RP2, RP4-2 и R4 может быть использован для проведения эпидемиологических исследований кандидозов, вызванных штаммами Candida spp. RAPD-анализ с привером JWWF наиболее пригоден для определения видовой принадлежности штаммов Candida spp., и для этого необходимо повторить исследования на большем числе видов Candida.

Сравнение молекулярных и экологофизиологических свойств клинических и сапротрофных штаммов Aspergillus sydowii

Каждая группа включала клинические и сапротрофные штаммы. В разных экологических условиях рост штаммов различался. Для клинических штаммов был характерен лучший рост на среде Сабуро, для сапротрофных — на средах с целлюлозой и сахарозой. В неблагоприятных условиях низкой влажности (0,90-0,80 a w) активный рост сапротрофных штаммов отмечали только при установленной нами оптимальной для развития этого вида температуре (30 °C). Клинические же штаммы при низкой влажности имели высокие скорости роста в широком интервале температур (25-35 °C). По исследованным показателям между клиническими и сапротрофными штаммами выявлены большие отличия по экологическим, чем по молекулярным свойствам.

Работа выполнена при поддержке гранта 08-04-00359 РФФИ.

Случай микроспории, вызванный редко встречающимся возбудителем

Медведева Т.В.1, Лена Л.М.2, Суханова Ю.А.1, Митрофанов В.С.1, Дроздова Л.Н.1,2

НИИ медицинской микологии СПбМАПО, Санкт-Петербургская медицинская педиатрическая академия, Россия

CASE OF MICROSPORIA, CAUSED BY RARE FUNGI

Medvedeva T.V.1, Leina L.M.2, Sukanova Y.A.1, Mitrofanov V.S.1, Drozdova L.N.1,2

1 Kashkin Research Institute of Medical Mycology of SEI APE SPb MAPE, Saint Petersburg; 2 Saint Petersburg Medical Pediatric Academy, Russia

Микроспорию относят к числу наиболее часто встречающихся заболеваний микотической этиологии в педиатрической практике. Доминирующим возбудителем микроспории на территории Российской Федерации является эозофильный гриб Microsporum canis, поэтому особый интерес представляют случаи этого заболевания, вызванные редко встречающимися возбудителями. Гриб Microsporum audouinii относят к антропофильным возбудителям; заболевание, вызванное им, нередко принимает хроническое
течение. Зарубежными авторами описаны случаи эпидемических вспышек, вызванных данным возбудителем.

Объекты и методы. Под нашим наблюдением находилась девочка 16 лет с распространенным поражением кожи лица, туловища и конечностей, носившим эритемато-сквамозный характер. Обращал на себя внимание необычный очаг поражения в области левой надбровной дуги, где имелось обильное мелкопластинчатое шелушение, волосы значительно разрезены. При осмотре под лампой Вуда в данном очаге отмечали характерное изумрудное свечение волосных фолликулов. Предположительный диагноз микроспории был подтвержден выделением Microsporum audouinii. Из очагов поражения кожи туловища и конечностей грибы выделены не были. Ребенок находился в контакте с инфицированным животным (кошка). При обследовании выявили хронический гастрит с повышенной секреторной активностью, дискинезию желчевыводящих путей, интестинальный лямблиоз, токсидермию. По поводу микроспории были рекомендованы последовательно препараты, содержащие изоконазола нитрат («Травокорт»®, «Травоген»®). Особенностью данного наблюдения является достижение клинико-лабораторного излечения без использования системных антифунгальных препаратов.

Выводы:
1. Описан случай микроспории, вызванный редко встречающимся в России возбудителем Microsporum audouinii.
2. Клинические проявления заболевания не имели существенных отличий по сравнению с микроспорией, вызванной другими возбудителями.
3. Наружное применение препаратов изоконазола нитрата эффективно в лечении данной патологии.

ОСОБЕННОСТИ ИММУННОГО ОТВЕТА ПРИ РЕЦИДИВИРУЮЩЕМ КАНДИДОЗЕ ПИЩЕВОДА У БОЛЬНЫХ БЕЗ ВИЧ-ИНФЕКЦИИ
Мелехина Ю.Э., Фролова Е.В., Учеваткина А.Е., Филиппова Л.В., Шевяков М.А., Васильева Н.В., Климко Н.Н.
НИИ медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

PECULIARITIES OF THE IMMUNE ANSWER OF GULLET RECEDIVE CANDIDOSIS IN HIV-NEGATIVE PATIENTS
Kashkin Research Institute of Medical Mycology, SEI APE SPb MAPE, Saint Petersburg, Russia

Кандидоз пищевода — распространенное заболевание у разной категории больных, однако, проблема рецидивирующего кандидоза пищевода изучена недостаточно.

Цель — оценка показателей общего иммунного ответа у больных рецидивирующим кандидозом пищевода (РКП).

Материалы и методы. Обследованы 84 больных РКП, с длительностью заболевания 3—7 лет и частотой рецидивов не менее 1 раз в год. Из них 43 больных — с РКП в фазе обострения и 41 больной — с РКП в фазе ремиссии. Группой сравнения были 23 человека с рефлюксов-эзофагитом (РЭ). Критериями диагностики РКП считали сочетание характерных клинических и эндоскопических признаков, выявление псевдомицелия, появляющихся в дрожжеподобных клетках при микроскопии мазка-отпечатка слизистой оболочки пищевода и выделение возбудителя при посеве материала из биоптата слизистой оболочки пищевода. Субопланулярный состав лимфоцитов (CD3, CD4, CD8, CD16, CD20, CD25) определяли иммуноцитохимическим методом с использованием монохромных антител. Производили ИФН-γ определяли через 24 часа в супензиях клеток крови с использованием коммерческих иммунноферментных тест-систем. Полученные результаты статистически обрабатывали с помощью программной системы STATISTICA for Windows (версия 6.0).

Результаты. Установлено, что у всех больных РКП достоверно снижено количество естественных киллеров и повышена спонтанная продукция ИФН–γ по сравнению с больными РЭ. Причем, у больных РКП в фазе обострения достоверно ниже показатели индуцированного ИФН–γ по сравнению с больными РЭ и РКП в фазе ремиссии. (Таблица).

Выводы. У больных рецидивирующим кандидозом пищевода установлено снижение числа естественных киллеров, что делает их более уязвимыми к вторичным инфекциям.
ПРИСУТСТВИЕ ТЕРМОТОЛЕРАНТНЫХ ШТАММОВ УСЛОВНО-ПАТОГЕННЫХ ВИДОВ ГРИБОВ В ВОЗДУХЕ ЖИЛЬНЫХ КВАРТИР

Миненко Е.А.*, Богомолова Е.В., Кирцидели И.Ю.
Ботанический институт им. В.Л. Комарова РАН, Санкт-Петербург, Россия;
*Технический Университет Мюнхена, Мюнхен, Германия

Многократно подтверждены факты негативного воздействия спор микроскопических грибов, находящихся в воздухе, на здоровье людей. Степень риска во многом зависит от того, какие виды микромицетов развиваются внутри помещения, так как разные виды и штаммы обладают разной степенью потенциальной опасности для человека (от аллергии до глубоких микозов). Одним из важнейших факторов патогенности является способность выдерживать температуру до 37 °С.

Цель работы — изучение термотолерантности штаммов микромицетов, доминирующих во внутренней среде жилых квартир в Санкт-Петербурге.

Материалы и методы. Микромицеты из воздушной среды изолировали в 45 квартирах посредством отбора проб воздуха прибором Кротова на чашки Петри с агаризованной средой Чапека (с добавлением антибиотиков для подавления роста бактерий). После культивирования в течение 7 дней при комнатной температуре (18±2 °С) микромицеты выделили и тестировали на термотолерантность по 2 изоляту из каждой квартиры. Колонии подращивали 2 дня при комнатной температуре, затем помещали чашки Петри в термостат при температуре 37, 38, 39, 40 ºC. Через 5 дней контролировали прирост колоний.

Результаты. Установлено, что из 90 исследованных изолятов — 56 (55,5%) способны выдерживать температуру до 37 °С, 12 (13,3%) — до 38 °С; 9 (10%) — до 39 °С и 5 (5,5%) — до 40 °С. В последнюю группу вошли следующие штаммы: Aspergillus niger, Paecilomyces varioti, Penicillium aurantiogriseum, Trichoderma viride.

Исходя из полученных данных, количество термотолерантных штаммов в воздухе жилых помещений достаточно высоко и вызывает опасения, но до тех пор, пока внутренний микроклимат в здании поддерживает развитие спор грибов и их численность остается ниже допустимого предела, ситуацию можно считать благополучной. Однако в случае наступления неконтролируемых аварийных случаев или нарушения микроклиматических условий потенциально опасные штаммы могут начать массово развиваться, создавая угрозу здоровью людей.

«ЗАЛАИН®» (СЕРТАКОНАЗОЛ) В ТЕРАПИИ ГРИБКОВЫХ ЗАБОЛЕВАНИЙ КОЖИ

Мишина Ю.В., Шебашова Н.В.
ФГУ «Нижегородский НИКВИ Росздрава», Нижний Новгород, Россия

Микозы гладкой кожи и крупных складок занимают одно из ведущих мест в структуре дерматологической патологии. Наличие грибковой инфекции нередко осложняет течение ряда кожных болезней, а также заболеваний общего профиля (в частности — аллергических заболеваний, бронхиальной астмы, сахарного диабета и др.).

В настоящее время существует большой выбор местных антимикотиков, используемых в лечении грибковых заболеваний кожи. На основании многолетней практики их применения можно оценить эффективность различных лекарственных средств с учётом их безопасности для пациентов и удобства использования. Одним из наиболее востребованных на современном этапе является препарат «Залаин®» (сертаконазол), используемый в лечении дерматомикозов и отрубевидного лишая.

Объекты и методы. Под нашим наблюдением находилось 62 пациента в возрасте от 16 до 68 лет. У 14 был диагностирован отрубевидный лишай (диагноз подтверждён на основании симптомов Malassezia furfur и пробой Бальцера), у 18 — микоз крупных складок, у 22 — микоз стоп, у 8 — интертригинозная эпидермофития (диагноз подтверждён микроскопически). Разноцветный лишай и межпалатальная эпидермофития в большинстве случаев имели место у молодёжи в возрасте от 16 до 24 лет, микоз крупных складок у 11 пациентов с поражением складок волосистой части головы и кожи подошв — у пациентов старше 40 лет. Пятеро пациентов с отрубевидным лишаем, 11 больных с микозом стоп и 4 — с поражением складок ранее лечились противогрибковыми препаратами, однако после прекращения лечения отмечали рецидивы заболевания.

Нами, в качестве местного антимикотика, был выбран крем залаин, который назначали пациентам 2 раза в день сроком от 2 до 4 недель. Больным с поражением крупных и мелких складок параллельно проводили гипосенсибилизирующую и антигистаминную терапию, 5 больных с рас пространённой формой отрубевидного лишая получали системный антимикотик из группы итраконазола. На фоне проводимого лечения субъективные ощущения (зуд, раздражение) регрессировали на 7-10 день, клинические — че-
рез 10–21 день, микроскопическое исследование давало отрицательные результаты на 14–28 день. Сроки лечения во многом зависели от первоначальной выраженности клинических проявлений, площади и формы поражения, возраста пациента и давности заболевания. Излечение было достигнуто у 100 % пациентов.

На основании собственного опыта можно сделать вывод, что сертаконазол обладает широким спектром противогрибкового действия, удобен в применении, высокоэффектен и безопасен, в связи с чем может быть рекомендован к более широкому применению в терапии микозов гладкой кожи и крупных складок.

ПАРАЗИТИЧЕСКИЙ СИМБИОЗ БДЕЛЛОВИБРИОНОПОДОБНЫХ БАКТЕРИЙ С CANDIDA SPP.
Мурадова С.А., Курбанов А.И.
Азербайджанский медицинский университет, г.Баку

ПАРАСИТИЧЕСКИЙ СИМБИОЗ БДЕЛЛОВИБРИОНОПОДОБНЫХ БАКТЕРИЙ С CANDIDA SPP.
Muromtsova S.A., Kurbanov A.I.
Azerbaijan Medical University, Baku

Бактерии-хищники, такие как бделловибрионы (Bdellovibrio) и подобные микроорганизмы встречаются в почве, пресноводных и морских водах. Этот микроб растворяет и усваивает как живые, так и мертвые клетки бактерий, особенно — разных видов грамотрицательных бактерий (сальмонела, кишечная палочка и др). Паразитический симбиоз подобных бактерий с Candida spp., представляет особый интерес, мы впервые наблюдали такое взаимоотношение в подобной ассоциации.

В чистой культуре Candida spp., выделенной из вагинального содержимого больной женщины с кандидозом, при посеве газоном обнаружили «негативные» колонии, при микроскопии которых выявили активно подвижные бактерии — вибрионы. При дальнейшем исследовании бделловибрионоподобных бактерий наблюдали, что они имеют двухстадийный жизненный цикл: первая стадия активная, подвижная, вторая — состояние покоя. Обе стадии протекают как внутри, так и вне клетки Candida spp.

Специфичность этих бактерий, т.е. обладают ли они тропизмом лишь к Candida spp., а также получение их в чистой культуре находятся в стадии изучения.

МОРФОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА И МОЛЕКУЛЯРНАЯ ФИЛОГЕНИЯ ДВУХ МОНОСПОРНЫХ КЛОНОВ TRICHODERMA SP., ВЫДЕЛЕННЫХ ИЗ НЕФТЕШЛАМОВ НА ТЕРРИТОРИИ РЕСПУБЛИКИ ТАТАРСТАН
Мухаметшина Р.Т., Э.А. Кабрера Ф., Алимова Ф.К.
Казанский Государственный Университет им. Ленина, г. Казань, Россия

МОРФОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА И МОЛЕКУЛЯРНАЯ ФИЛОГЕНИЯ ДВУХ МОНОСПОРНЫХ КЛОНОВ TRICHODERMA SP., ВЫДЕЛЕННЫХ ИЗ НЕФТЕШЛАМОВ НА ТЕРРИТОРИИ РЕСПУБЛИКИ ТАТАРСТАН
Muhametshina R.T., E. A. Kabrera F., Alimova F.K.
Lenin State University Kazan, Russia

Trichoderma представляет собой объект для проекта по функциональной геномике для идентификации и использования генов, экспрессирующихся в процессе взаимодействия с растениями и с фитопатогенами, при культивировании в условиях, индуцирующих или подавляющих продукцию промышленных ферментов или биомассы, при утилизации полифенолов, углеводородов, пестицидов и других поллютантов, метаболизируемых данными грибами в качестве субстратов.

Цель настоящей работы — исследование морфологической характеристики и молекулярной филогении двух моноспорных клонов Trichoderma sp., выделенных из нефтехламов на территории Республики Татарстан.

Геном Trichoderma представляет собой привлекательное и богатое поле исследования, которое приведет к расширению механизмов, представляющих основной интерес в биологии.

К настоящему моменту большинство таксонов Trichoderma определено на основании морфологических критериев. Проведен анализ дерев, полученных на основе различных несвязанных генов, что позволило правильно установить филогенетические позиции. При филогенетических исследованиях, основанных на анализе сиквенсов 18S rДНК, показано, что Trichoderma образует монофилетическую ветвь в составе Hypocreacea. Нами были исследованы два моноспорных изолята Trichoderma AR1 и Trichoderma AR2.

Для промышленного использования Trichoderma важна стабильность признаков, характерная только для моноспорных изолятов. При исследовании ДНК с помощью ПЦР анализа с использованием специфических ITS фрагментов ядерной рибосомальной ДНК изолятов Trichoderma, подтверждены результаты идентификации с...
помощью морфологических признаков.
Мы обнаружили невысокую изменчивость между изо-
лятами одного вида, но выделенных из различных эколо-
гических ниш.

АУТОИММУННЫЙ ПОЛИЭНДОКРИННЫЙ СИНАРДРОМ И ХРОНИЧЕСКИЙ КАНДИДОЗ КОЖИ И СЛИЗИСТЫХ ОБОЛОЧЕК — ОПИСАНИЕ КЛИНИЧЕСКОГО СЛУЧАЯ
Неверова Ю.В., Мирзабалаева А.К., Мелехина Ю.Э.
НИИ медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

АКТУАЛЬНОСТЬ. В проведенных ранее исследованиях показан значительная частота эндокринных нарушений у больных с хроническим кандидозом кожи и слизистых оболочек. Гипотиреоз в этих больных выявляется в 52,2% случаев, гипопаратиреоз — в 40% случаев, первичная хро-
ническую недостаточность коры надпочечников — в 21% случаев, нарушения функционального состояния системы гипофиз-гонады — в 65% случаев. Хронический кандидоз кожи и слизистых оболочек (ХККС) чаще отмечали (в 80% случаев) при аутоиммунном полинеффритоном синдроме 1 типа (АПЭС), который характеризуется классической триадой: гипопфтортикоидизм в сочетании с ХККС и гипо-
ратиреозом, реже встречаются заболевания щитовидной железы и ХККС: обнаружены проявления стоматита, хейли-
гитоукус, кандидоза пищевода, кандидозного вульво-
вагинита, онихомикоза кистей. Основным возбудителем были грибы C. albicans, обнаружение которых на слизистых
оболочках полости рта, влагалища, пищевода, в мокроте,
ногтевых пластинах подтверждало диагноз и системность
обращалось за лечение на фоне ХККС в связи с не-
полнолюбовием компенсацией эндокринных нарушений из-за лабильного течения сахарного диабета и состояния субклинического гипотиреоза с повышенным
содержанием тиреотропного гормона (ТТГ) в крови.

Во время госпитализации в клинику с 16.10.08 по 31.10.08 у пациентки было зафиксировано обо-
стрение ХККС: обнаружены признаки стоматита, хейли-
гитоукус, головная боль, кандидоза пищевода, кандидозного вульво-
вагинита, онихомикоза костей. Основным возбудителем были грибы C. albicans, обнаружение которых на слизистых
оболочках полости рта, влагалища, пищевода, в мокроте,
ногтевых пластинах подтверждало диагноз и системность
поражения. C. albicans оказались резистентными к препа-
ратам азолов, в связи с чем было назначено лечение полне-
новыми препаратами — нистатин по 1 мг в сутки на весь период госпитализации (кандидоз слизистых
оболочек полости рта) с положительным эффектом. Па-
циентка получала интравагинальный кетоконазол 400 мг
по 1 свече в сутки — 10 дней для лечения вагинального
кандидоза, общеукрепляющую терапию анаболического и
антимикотическими препаратами (низорал — по 100
мг в день перорально) и мазь клотримазол — на поражен-
ные ногтевые пластинки.

Больной проведена максимальная коррекция гормо-
нальной терапии — увеличена доза пролологированного
инсулина, L-тироксина до 150 мкг/сут.; дозы глюко- и ин-
нервальных антимикотических препаратов (диазолон — 2,5 мг/сут., кортинефф — 0,05 мг/сут.) остались прежними. Больная была направлена на дополнительную динамическую с рекомендациями продолжить
антимикотическое лечение с учетом выявленных локали-
Заключение. Хронический кандидоз кожи и слизистых оболочек часто сочетается с аутоиммунным полиэндокринным синдромом 1 типа. Эндокринные нарушения, особенно — сахарный диабет, способствуют более тяжелому течению хронического кандидоза, частым рецидивам заболевания. Метаболические нарушения при эндокринопатиях усиливают адгезивные свойства грибов, облегчая их инвазию в ткани организма. Для лечения ХККС и поддержания качества жизни больных необходимы длительное антимикотическое лечение и стабильная компенсация гормональных, метаболических и иммунных нарушений.

РАЗНОЦВЕТНЫЙ ЛИШАЙ У БОЛЬНЫХ С АКНЕ, ОСОБЕННОСТИ ТЕЧЕНИЯ И ПОДХОДЫ К ТЕРАПИИ

Нечаева О.С., Ключарева С.В.
СПб ГМА им. И.И. Мечникова, Санкт-Петербург, Россия

ПITYRIASIS VERSICOLOR IN PATIENTS WITH ACNE, PECULIARITIES OF COURSE AND TREATMENT POSSIBILITIES

Nechaeva O.S., Kluchareva S.V.
I.I. Mechnikov State Medical Academy, Saint Petersburg, Russia

По современным данным, разноцветный лишай является одной из наиболее распространенных нозологий среди грибковых заболеваний кожи. Возбудитель — липофильная Malassezia furfur, оказывающаяся сапробом или, иногда, патогеном. Большую роль в развитии клинических проявлений заболевания играет ослабление иммунной системы, эндокринопатии, повышенная потливость и себорея, особенно, сопровождающие изменением химического состава водно-липидной мантии кожи.

Цель работы — изучение частоты возникновения и клинико-морфологических особенностей разноцветного лишая у больных с акне.

Объекты и методы. В исследовании приняли участие 87 больных с акне легкой и средней степени тяжести в возрасте от 15 до 28 лет. В группе обследованных лиц преобладали женщины (64,3%). При клиническом наблюдении у 26 больных (29,9%) был поставлен диагноз разноцветного лишая, при этом обращает внимание то, что в последней группе пациентов женщины составили 88,5%. Распространенность высыпаний была значительной, кожный процесс локализовался преимущественно в себорейных зонах, однако у части больных (15,4%) занимал также нижние отделы кожи спины и живота. Этиологическим агентом

КЛИНИКО-ЭПИДЕМИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ГРИБКОВЫХ ЗАБОЛЕВАНИЙ КОЖИ НАСЕЛЕНИЯ Г. ВОРОНЕЖА

Новикова Л.А, Бахметьева Т.М.
Воронежская Государственная медицинская академия им.Н.Н.Бурденко, г. Воронеж, Россия

Актуальность. Грибковые заболевания кожи занимают одно из ведущих мест среди инфекционной патологии кожи. Для них характерно хроническое течение, частое вовлечение в патологический процесс кожи, волос, ногтевых пластинок.

Цель исследования — изучить клинико-эпидемиологические особенности грибковых заболеваний кожи населения г. Воронежа за 2008 год.

Методы. По годовым отчетам и амбулаторным картам микологического кабинета МУЗ ГКБ №7 был проведен анализ клинических и эпидемиологических особенностей грибковых заболеваний кожи населения г. Воронежа за 2008 год.

Результаты. В 2008 году в г.Воронеже было зарегистрировано 5794 случая грибковых кожных заболеваний, что составило 78,3% среди инфекционной патологии кожи. При эпидемиологическом анализе по нозологическим формам диагноз микроспории установили у 4,2% больных, отрубевидного лишая — у 29,2%, микоза стоп — у 66,6%. Случаев трихофитии в 2008 году не было. Диагностика грибковых заболеваний основывалась на данных клиники, лабораторных, микроскопического, культурального исследований. Клинические проявления микроспории у 54,2% больных локализовались на гладкой коже, у 15,4% — на волосистой части головы, у 30,4% — на волосистой части головы и гладкой коже. Этиологическим агентом грибковых заболеваний кожи населения г. Воронежа за 2008 год.
во всех случаях микроспории был Microsporum canis. У преобладающего числа больных микроспорией (73,6%) источником заражения были животные (кошки, собаки). Среди заболеваний микроспорией дети составили 93,4%. Клинические проявления отрубевидного лишая локализовались преимущественно на коже туловища (шея, верхняя часть спины, грудь). У 70,3% больных процесс носил распространенный характер. Микозы стоп в подавляющем большинстве случаев (71,6%) наблюдали у взрослых. У 69,9% пациентов микозами стоп заболевших поражений кожи стоп и ногтевых пластинок был Trichophyton rubrum. Из клинических особенностей микозов стоп, вызванных T. mentagrophytes, следует отметить, что у большинства больных (94,8%) очаги поражения локализовались между пальцами стоп, у 5,2% — в области подошв. Из интертриговую форму микоза стоп выявили у 70,6% больных, дисгидротическую — у 24,2%, сывамозную — у 5,2%. По клиническому течению микоза стоп, вызванного T. rubrum, сывамозная форма была у 82% больных, гиперкератотическая — у 18% больных. Наблюдали преимущественное поражение кожи подошв. Грибковое поражение ногтей выявили у 67,5% больных микозами стоп. Самой частой формой онихомикоза являлась дистальная форма (82,3%). У 17,7% больных был тотальный тип онихомикоза. Лечение всех больных проводили амбулаторно в микологическом кабинете МУЗ ГКБ №7 с использованием системных (тербинафина, румикоза, гризеофульвина) антимикотиков и традиционного местного противогрибкового лечения.

Выводы. Таким образом, среди населения г. Воронежа вульвовагинальный кандидоз является одним из распространенных поражений нижнего отдела гениталий и встречается до 20-30% в структуре инфекций влагалища. При этом у каждой второй женщины имеют место вторные эпизоды заболевания. Основными принципами лечения вульвовагинального кандидоза является терапия противогрибковыми препаратами. Преимуществом местных антимикотических препаратов является то, что они практически не всасываются и поэтому безопасны, создают высокую концентрацию антигрибка на слизистой оболочке, обеспечивают быстрое уменьшение клинических симптомов заболевания. Недостаток имеющихся препаратов для местной терапии заключается в неравномерном распределении на поверхности слизистой оболочки, в недостатке исследования. Принимая во внимание рост устойчивости Candida к антимикотикам, актуальным является разработка новых перспективных методов лечения вульвовагинального кандидоза.

Цель исследования — изучение эффективности применения противогрибкового вагинального крема гинофорт при вульвовагинальном кандидозе.

Методы исследования. Мы исследовали эффективность противогрибкового 2% вагинального крема гинофорт в лечении 23 больных с вульвовагинальным кандидозом в возрасте от 18 до 53 лет. Пациентки жаловались на зуд во влагалище и наружных половых органах, ощущение жжения и раздражения. Лабораторную диагностику проводили микроскопическим и культуральным методами. Гинофорт (бутоконазола нитрат) — препарат местного действия на основе бутоконазола с новой технологией длительного и постепенного высвобождения действующего вещества, которое действует во влагалище более 4 суток после однократного применения. Выпускается в виде полипропиленового аппликатора с содержанием 5 г вагинального крема. Гинофорт обеспечивает приливание эмульгированных частиц лекарственного вещества, которое действует во влагалище более 4 суток после однократного применения. Лечение заключалось в однократном применении гинофорт в лечении 23 больных с вульвовагинальным кандидозом.

Выводы. Согласно нашим данным, вагинальный крем гинофорт эффективен в лечении кандидозного вульвовагинального кандидоза. Преимуществами гинофorta являются быстрое купирование симптомов, возможность применения в любое время суток, использование одной дозы на курс лечения, безопасность применения, возможность применения в любое время суток. Лечение заключалось в одномкратном применении гинофорт в лечении 23 больных с вульвовагинальным кандидозом. Лечебный эффект был достигнут у 22 больных (95,6%). Рецидивы заболевания отсутствовали. Больные отмечали удобство в проведении терапии. Выздоровление наступило спустя 3-6 месяцев. Результаты. У всех больных в первые сутки отмечали исчезновение клинических симптомов. Этнологическое изучение наступило у 22 больных (95,6%). Рецидивы заболевания не отмечались. Больные отмечали удобство в проведении терапии. Побочных осложнений терапии не наблюдалось.
ОПЫТ ПРИМЕНЕНИЯ КРЕМА «ЗАЛАИН»® В ЛЕЧЕНИИ МИКОЗОВ ГЛАДКОЙ КОЖИ У ПАЦИЕНТОВ С БОЛЕЗНЯМИ СОЕДИНИТЕЛЬНОЙ ТКАНИ

Новикова Л.А., Бялик Л.Р., Донцова Е.В.
Воронежская государственная медицинская академия им. Н. Н. Буденского, г. Воронеж, Россия

Опыт применения крема «Залаин»® в лечении микозов гладкой кожи у пациентов с заболеваниями соединительной ткани

Известно, что заболеваемость микозами у пациентов с заболеваниями соединительной ткани достаточно высока. Более чем у 30% больных с данной патологией отмечают длительное рецидивирующее течение микозов, резистентность к проводимому лечению (возможно, обусловленную проведением базисной терапии кортикостероидами, антибиотиками внутрь и в виде наружных лечебных средств). При выборе препаратов для лечения микозов мы ориентировались на доказанную безопасность, максимальную эффективность, короткие сроки лечения, удобную для применения форму препарата. Одним из таких препаратов является крем «Залаин»® (противогрибковый препарат, производное имидазола и бензотиофена).

Цель исследования — изучить клиническую эффективность и переносимость препарата «Залаин»® крем при лечении микозов гладкой кожи.

Объекты и методы. Под нашим наблюдением находилось 47 пациентов: 28 больных поверхностной бляшечной склеродермией (23 пациента имели сопутствующий микоз стоп, 5 — отрубевидный лишай) и 19 больных хронической дискоидальной красной волчанкой с микотическим поражением крупных складок. Диагноз микоза подтверждался микроскопически. Крем «Залаин»® наносили на кожу тонким слоем 2 раза в сутки в течение 4 недель.

Результаты. К концу курса лечения у 45 пациентов наступило клиническое и микологическое излечение. Лишь у 2 пациентов при распространенном микозе паховых складок, 5 — отрубевидный лишай) и 19 больных хронической дискоидальной красной волчанкой с микотическим поражением крупных складок. Диагноз микоза подтверждался микроскопически. Крем «Залаин»® наносили на кожу тонким слоем 2 раза в сутки в течение 4 недель.

Все пациенты отмечали хорошую переносимость препарата, без каких-либо побочных реакций. В течение трех месяцев наблюдения, после окончания лечения, рецидивов микозов не отмечали.

Выводы. Крем «Залаин»® является эффективным и безопасным препаратом, и может быть с успехом применен у иммунокомпрометированных пациентов в качестве монотерапии микозов гладкой кожи.

L-ЛИЗИН-АЛЬФА-ОКСИДАЗА — ЭКЗОЦЕЛЛЮЛЯРНЫЙ ФЕРМЕНТ TRICHODERMA SP.

Пакина Е.Н., Смирнова И.П., Хасанов И.Ш., Шнейдер Ю.А.
Российский университет дружбы народов, г. Москва, Россия

L-lysine-alpha-oxidase — Exocellular Ferment TRICHODERMA SP.

Экзоцеллюлярный фермент грибного происхождения L-лизин-альфа оксидаза (КФ 1.4.3.2) катализирует реакцию окислительного дезаминирования незаменимой амиксов кислоты L-лизина.

Противоопухолевое действие очищенной L-лизин-альфа оксидазы (LO) Trichoderma sp. проявлялось в значительном торможении роста аденокарциномы молочной железы Ca-755 и опухоли Льюиса (3LL), в увеличении продолжительности жизни мышей с периваскулярными лейкоцитами и излечении мышей с асцитной гепатомой 22A.

Цель — исследование стабильности грибного экстракта Trichoderma sp., обладающего L-лизин-альфа оксидазной активностью, в условиях длительного хранения (при -4 °C) в течение 8 лет.

По результатам исследования показана высокая стабильность экстракта, L-лизин-альфа-оксидазная активность не менялась. При исследовании субстратной специфичности выявили, что экстракт вызывает деструкцию только L-лизина.

По полученным данным о термостабильности экстракта Trichoderma sp., мы предполагаем возможность практического использования не только гомогенной субстанции, но и неочищенного экстракта Trichoderma sp. в качестве потенциального лекарственного средства.

Объекты и методы. Исследования проводили на коллекции фитопатогенных и сапротрофных грибов (таблица), полученных на кафедре микологии биологического факультета Московского государственного университета им. Ломоносова. На половину чашек Петри с сусло-агаром высевали колонии исследуемых грибов, на вторую половину чашек наносили метаболит Trichoderma sp. Контролем служил высев тех же грибов на чашки Петри без нанесения метаболита. Чашки помещали на 5 суток в термостат с температурой 27 °С.

Результаты.

Рост грибов при внесении метаболита Trichoderma sp.

<table>
<thead>
<tr>
<th>№</th>
<th>Культура</th>
<th>2-е сутки</th>
<th>5-е сутки</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspergillus niger</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>A. ochraceus</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>3</td>
<td>A. terreus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>A. ustus</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>5</td>
<td>A. versicolor</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>
6 A. flavus + ++
7 A. fischeri + +++
8 Penicillium Thomii + +++
9 P. purpurogenum + +++
10 P. janthinellum + +++
11 P. simlicissimum + +++
12 P. chrysogenum + +++
13 P. janczewskii + +++
14 P. canescens + +++
15 P. vinaceum + +++
16 P. avenaceum + +++
17 Fusarium poae + +
18 F. oxysporum + +
19 F. verticilloides + +
20 Botryotrichum piluliferum + +
21 Cladosporium cladosporioides + +
22 Paecilomyces variotii + +
23 Trichothecium roseum + +
24

Примечание — задержка роста грибов выражалась в мм:
+ — задержка роста 10-20 мм
++ — задержка роста 0-10 мм
+++ — отсутствие задержки роста

На вторые сутки во всех чашках Петри отмечали одинаково интенсивный рост колоний исследуемых грибов. Однако на 5-е сутки в ряде чашек наблюдали остановку роста грибов, в то время как в контрольном варианте на 5-е сутки все культуры грибов показали интенсивный рост, что отражено в таблице 1.

Грибы родов Botryotrichum, Fusarium, Cladosporium, Paecilomyces и Trichothecium почти полностью приостановили рост, в то время как грибы родов Penicillium, Aspergillus, A. ochraceus, A. ustus и A. fischeri, так же как и грибы рода Penicillium, активно росли всю пять суток культивирования, в то время как Aspergillus niger, A. terreus, A. versicolor и A. flavus приостановили рост в присутствии метаболита Trichoderma sp.

Вывод. Таким образом, метаболиты триходермы стабильны и не теряют своей активности в процессе длительного хранения.
ИСУЩЕНИЕ ВИДОВОГО СОСТАВА МИКРООРГАНИЗМОВ В БИОПЛЕНКАХ НА ВЕНОЗНЫХ И УРЕТРАЛЬНЫХ КАТЕТЕРАХ В ОТДЕЛЕНИЯХ РЕАНИМАЦИИ И ИНТЕНСИВНОЙ ТЕРАПИИ

Пинегина О.Н.1, Сатурнов А.В.2, Выборнова Г.Г.1, Пальваль Г.В.1, Плахотнюк Л.В.1, Богомолова Т.С.1, Васильева Н.В.1

1НИИ медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПб МАПО; 2Ленинградская областная клиническая больница, Санкт-Петербург, Россия

Полученные данные свидетельствуют о высокой частоте колонизации катетеров микроорганизмами, в том числе грибами Candida spp.

ЭФФЕКТИВНОСТЬ ИТРАКОНАЗОЛА ПРИ ЛЕЧЕНИИ ХРОНИЧЕСКОГО РЕЦИДИВИРУЮЩЕГО ВУЛЬВОВАГИНАЛЬНОГО КАНДИДОЗА

Прилепская В.Н., Анкирская А.С., Байрамова Г.Р., Муравьева В.В.

Цель исследования — оценить эффективность препарата, содержащего итраконазол, в лечении хронического рецидивирующего вульвовагинального кандидоза (ХРВК).

В ходе исследования наблюдалось 83 женщины: 43 пациентки (I группа) получали препарат орунгал; 40 женщин (II группа) — препарат румикоз. Препараты рекомендовали в дозе 200 мг после еды однократно в течение 3-х дней с последующей противорецидивной терапией.

Вместе с тем, у двух женщин, у которых при первичном исследовании было выявлено в 65% случаев. Полученные данные свидетельствуют о высокой частоте колонизации катетеров микроорганизмами, в том числе грибами Candida spp.
Опыт лечения трихофитии текназолом

Рахимов И.Р.
Научно-исследовательский институт дерматологии и венерологии, г. Ташкент, Узбекистан

ОПЫТ ЛЕЧЕНИЯ ТРИХОФИТИИ ТЕКНАЗОЛОМ

Одним из распространенных кожных заболеваний остаются грибковые инфекции, изучение которых имеет большое значение для клинической практики. Лечение грибковых заболеваний часто требует длительного курса лечения и может вызывать у пациентов нежелательные побочные эффекты. В этой связи интерес представляет опыт применения противогрибкового препарата «Текназол» (Текназол) ИП «Нобель фармацевтика» (Узбекистан) при зооантропонозной трихофитии.

Цель нашего исследования — изучить эффективность препарата «Текназол» (Текназол) ИП «Нобель фармацевтика» (Узбекистан) при зооантропонозной трихофитии различных локализаций.

Объекты и методы. Под нашим наблюдением находились 27 больных зооантропонозной трихофитией в возрасте от 5 до 75 лет. У всех пациентов на момент постановки диагноза грибкового поражения были найдены акантолитические клетки. Все больные получили препараты в возрасте от 23 до 62 лет. Давность заболевания у 90% пациентов составила до 1 года, у 10% — до 5 лет.

Результаты. Показано, что элиминация грибов у 22 (81,4%) больных произошла в сроки от 15 до 21 дня (в среднем — 18,2 дня). Пятеро больных с трихофитией локальной локализации продолжили лечение «Текназолом» до 28 дней.

Опыт применения противогрибкового препарата «Флунол» при кандидозе слизистой оболочки полости рта у больных с пузырчаткой

Рахимов И.Р., Абидова З.М.
Научно-исследовательский институт дерматологии и венерологии, г. Ташкент, Узбекистан

EXPERIENCE OF ANTIMYCOTIC «FLUNOL» USING IN PATIENTS WITH ORAL CANDIDOSIS AND PEMFIGUS

Rahimov I.R., Abidova Z.M.
The Research Institute to Dermatology and Venerology, Tashkent, Uzbekistan

Важным разделом современной дерматологии являются заболевания слизистой оболочки полости рта и красной каймы губ. В настоящее время они являются одной из главных причин развития грибковых заболеваний. Данный опыт представляет собой изучение эффективности препарата «Флунол-50» (флуконазол) при кандидозе слизистой оболочки полости рта.

Объекты и методы. Клинико-микологические исследования проводили у 17 больных с пузырчаткой в возрасте от 23 до 62 лет. Давность заболевания у 5 пациентов составила до 1 года, у 12 — до 27 лет. При цитологическом исследовании эрозивной поверхности слизистой оболочки полости рта были найдены акантолитические клетки.

Выводы. Показано, что препарат «Флунол-50» при кандидозе слизистой оболочки полости рта является эффективным средством. Пятеро больных с трихофитией локальной локализации продолжили лечение «Текназолом» до 28 дней.
калия и наружная терапия).
У 11 (64,7%) из 17 больных пузырчаткой клинически наблюдали псевдомембранозную форму кандидоза полости рта. При микологическом исследовании биоматериал из слизистой оболочки полости рта были обнаружены грибы рода Candida.
Пациентам с пузырчаткой, осложненной кандидозом полости рта, назначали «Флунол» по 50 мг 1 раз в день в течение 7 дней на фоне базисной терапии.
Результаты. При лечении «Флунолом» больных пузырчаткой, осложненной кандидозом слизистой оболочки полости рта, клинико-этиологическое излечение кандидоза достигнуто у 7 больных в течение 7 дней, а у 4 больных — в течение 14 дней.
При контROLEМ микологическом исследовании слизистой оболочки полости рта больных исчезновение возбудителя наблюдали на 10-11 день лечения. От приема препарата побочных эффектов не отмечали.
Таким образом, препарат «Флунол» оказывает положительный терапевтический эффект при лечении кандидоза слизистой оболочки полости рта у больных с этим заболеванием.

ЭТИОТРОПНАЯ ТЕРАПИЯ ГРИБКОВЫХ И ГРИБКОВО-БАКТЕРИАЛЬНЫХ РИНОСИНУСИТОВ
Редько Д.Д., Шляга И.Д., Новикова Н.Н.
УО «Гомельский государственный медицинский университет», г. Гомель, Республика Беларусь

ETIOTROPIC THERAPY OF FUNGAL-BACTERIAL RHINOSINUSITIS
Redko D.D., Shlyaga I.D., Novikova N.N.
Gomel State Medical University, Gomel, the Republic of Belarus

Цель исследования — изучение спектра микробиоты и её резистентности к основным антимикробным препаратам на предмет проведения рациональной этиотропной терапии грибковых и грибково-бактериальных риносinusитов.
Материалы и методы. В исследование включены 54 пациента в возрасте от 17 до 74 лет с риносinusитом грибковой и грибково-бактериальной этиологии. Диагностика базировалась на комплексе методов: ЛОР-осмотр, оптическая риноскопия, рентгенологическое исследование (компьютерная и магнитно-резонансная томография), гистологическое, иммунологическое и микробиологическое исследования. Идентификацию, определение чувствительности возбудителей выполняли с помощью микробиологического анализатора miniAPI (bioMerieux, Франция). Определение чувствительности дрожжевых микромицетов к противогрибковым препаратам (флюконазолу, итраконазолу и вориконазолу) проводили на стрипах (ATB FUNGUS-3) в соответствии с требованиями Института клинических лабораторных стандартов (CLSI)-NCCLS M-44, США.
Результаты. В наших исследованиях микробиологическое (культуральное) подтверждение синусита отмечено в 40 (74%) случаях, гистологическое — в 12 (23%), микологическое + гистологическое — в 2 (4%). При грибковых риносinusитах (n=34) большее этиологическое значение имеет мицелиальная микобиота: Aspergillus spp. (fumigatus, niger, flavus) (58%), Penicillium spp. (16,7%), Mucor (8,3%), Alternaria (4,2%); значительно реже выявляли дрожжевые организмы: C. albicans (8,3%) и C. krusei (4,2%). При микст-инфекции (n=20) значительно возрастала этиологическая роль Candida (53%), при этом резистентность к флуконазолу не превышает 25%. Исходя из данных мировой литературы и полученных нами результатов по антимикотикочувствительности выделенных штаммов, препаратами выбора при лечении грибковых риносinusитов являются итраконазол, амфотерицин В, вориконазол. Назначение флуконазола оправдано лишь при подтверждении этиологической роли C. albicans.
В сочетании с микромицетами наиболее часто выделяли из носа и околоносовых пазух грам-отрицательные бактерии (Haemophilus influenze, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter) — 76%, анаэробы (Peptostreptococcus, Prevotella, Fusobacterium) — 22,6%.
Выводы. С целью повышения эффективности лечения хронических грибковых риносinusитов показано использование методов идентификации и определения антимикотикочувствительности возбудителей. Доминирующее этиологическое значение (85,3%) при грибковых риносinusитах имеют грибы из родов Aspergillus spp. и Penicillium spp. Препаратом выбора для антимикотической терапии синусита являются итраконазол, вориконазол и амфотерицин В. Для антибактериальной терапии при хронических грибково-бактериальных синуситах целесообразно применение цефалоспоринов 3-4 поколения, защищённых аминопенициллинов, респираторных фторхинолонов, в комбинации с метронидазолом (уровень резистентности не превышает 7%).
Уточнение тяжести и характера поражения мозга при энцефалитах в ранние сроки заболевания позволяет определить тактику лечения больных и является основой для прогнозирования течения и исхода заболевания.

Цель исследования — определение диагностических возможностей вызванных потенциалов при энцефалитах и менингоэнцефалитах у детей.

Материалы. Обследовано 54 пациента в возрасте от 1 до 17 лет с менингоэнцефалитами различной этиологии, в том числе 10% бактериально-грибковой этиологии.

Методы. Всем больным проводили клинико-неврологический мониторинг, МРТ головного мозга, исследование вызванных потенциалов (ВП) разных модальностей: акустические стволовые (АСВП), соматосенсорные ВП при стимуляции большеберцового (ССВП n. tib.) и спинного нервов (ССВП n. med.) по стандартной методике.

Результаты. При сопоставлении неврологической симптоматики с данными ВП показано, что изменения ВП при наличии очаговых неврологических нарушений отсутствуют, в зависимости от модальности ВП, только в 9,5-17% случаях. В 44,2-50,9% наблюдений данные ВП соответствуют проявлениям неврологической симптоматики. В 32,1-46,3% изменения ВП регистрировали при отсутствии очаговой неврологической симптоматики. При сопоставлении ССВП и АСВП с данными МРТ наблюдали большую чувствительность ВП, позволявших в 10-15,5% дополнительно к структурным выявить наличие функциональных очагов поражения мозга. В 40-46% случаев выявляли замедление проведения по проводникам головного мозга, что указывало на демиелинизирующий характер поражения. В 36-49% наблюдений зарегистрировали снижение амплитуд вызванных потенциалов, что свидетельствовало об угнетении функциональной активности нейронов головного мозга. Степень снижения амплитуды ССВП n. tibialis преобладала при хроническом течении энцефалитов и в большей степени определяла исходы заболевания.

Выводы. Исследование вызванных потенциалов при менингоэнцефалитах у детей позволяет уточнять как тяжесть, характер и распространенность поражения вещества головного мозга, так и выявлять субклинические нарушения функций ЦНС. Для прогнозирования течения и исходов менингоэнцефалитов у детей целесообразным является учет показателей ВП в дополнение к клиническим данным.
спороношения.

Количество спор на одном мкм² определяли на цифровых изображениях с использованием масштабных микрометрических шкал.

В данной статье мы приводим пример расчёта степени поражения одной поверхности (стены) — 1А в помещении № 1. При высоте стены 2,50 м и ширине 4 м — площадь исследуемой поверхности (СИА) составляет — 10 м².

Расчет площади каждой пораженной поверхности помещения, согласно полученным данным при осмотре, производят по формуле:

\[
S_{ij}^1 = \sum_{k=1}^{N} S_{ijk},
\]

где: \(i\) — номер помещения; \(j\) — буквенный индекс поверхности; \(k\) — номер пятна; \(N\) — число пятен поражения на поверхности.

Расчет площади поражённой поверхности \((S_{1A}^f)\) производят путём суммирования площадей, занятых заболеваниями, согласно данным, полученным при осмотре, площадь поражённой поверхности составляет 4,5 м².

Степень поражения поверхности грибами (СП) вводят как отношение поражённой грибами площади к соответствующей площади, на которой имеется поражение грибами, и рассчитывают по формуле:

\[
SP_{ij} = \frac{S_{ij}^f}{S_{ij}},
\]

где: \(i\) — номер помещения; \(j\) — буквенный индекс поверхности; \(S_{ij}^f\) — площадь поражённой поверхности на поверхности \(ij\), м²; \(S_{ij}\) — площадь поверхности \(ij\), на которой имеется поражение грибами, м². Степень поражения грибами поверхности 1А в помещении № 1 составляет 0,45 часть этой поверхности, или 45%.

Степень спороношения на исследуемой поверхности (СС) вводят как отношение площади поверхности, занятой спороносящими грибами \((S_{ij}^c)\), к общей площади, поражённой грибами поверхности \((S_{ij}^f)\), где \(i\) — номер помещения; \(j\) — буквенный индекс поверхности.

\[
CC_{ij} = \frac{S_{ij}^c}{S_{ij}}.
\]

Качественную оценку степени спороношения грибов (СС) по характеру и наличию спороношения на поражённой грибами поверхности можно проводить визуально. До 0,25 части поражённой поверхности - спороношение гриба незначительное, от 0,25 до 0,5 — среднее, от 0,5 до 0,9 очень сильное (обильное) и от 0,9 до 1 — сплошное. Степень спороношения определяют для каждого пораженного пятна в соответствии с введенной нумерацией. Степень спороношения помещения (СП) рассчитывают по формуле:

\[
CSP = \sum_{i=1}^{N} CC_{ij} \cdot S_{ij}^f \cdot S_{ij}^f / S_{ij}^f.
\]

в данном случае поверхность одна, поэтому ССП соответствует СС и равна 0,5.

Поверхностную концентрацию спор (ПКС) вводят, как отношение числа спор на изображении пораженной поверхности, полученном при помощи микроскопа и цифровой камеры или фотоаппарат, к действительной площади поверхности этого изображения, и рассчитывают по формуле:

\[
PCK_{ij} = \frac{C_{kj}}{S_{ij}^f / \text{мкм}^2},
\]

где: \(k\) — номер пробы; \(C\) — число спор в изображении

109
ПКОС = \(\frac{КСПП}{S} \left[\frac{спор}{м^2} \right] \).

По нашим расчетам ПКОСП = 35·10^9/10 спор/м^2

Аналогично рассчитывают число спор на каждой поверхности помещения, число спор в помещении и поверхностная концентрация спор в помещении.

БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ АНТИГРИБКОВОГО ПОЛИЕНОВОГО АНТИБИОТИКА ФИЛИПИНА

Самедова А.А.
Институт Ботаники им. В.М. Комарова НАН Азербайджана, г. Баку

Полиеновые антибиотики хорошо известны в медицине как противогрибковые лекарственные препараты. Полиеновый антибиотик филипин был обнаружен Вайнтфилдом с сотрудниками в 1955 г. и впервые выделен на Филипинах из неизвестных до этого почвенных актиномицетов, получивших название Streptomyces filipensis, откуда и произошло название данного антибиотика. Как выяснилось позже, филипин обладает антигрибковой активностью, и был идентифицирован в химическом отношении как антибиотик, относящийся к классу полиеновых макролидов. В структуре филипина имеется 5 двойных связей, что позволяет его причислить к пентаеновым антибиотикам.

Были проведены исследования по интегральной проводимости мембран, селективности ионных каналов, формирующихся в присутствии филипина. В концентрации 2·10^-6М он эффективно увеличивает проводимость мембран (в 10^5-10^6 раз). В его присутствии на бислойных липидных мембранах, содержащих холестерин, наблюдали резкое нарастание проводимости, и мембраны оставались достаточно стабильными примерно в течение 1 часа, даже при значении мембранных потенциала +200 mV. Избирательность филипина составляет +18 mV (концентрация антибиотика — 2·10^-5М; соотношение фосфолипид/холестерин = 2:1). Мембранная проводимость липидных бислоев, не содержащих холестерин, не меняется при воздействии филипина. В присутствии холестерина и холестеролинонных бислоев, не содержащих холестерин, не меняется при воздействии филипина.

При малых концентрациях филипина (10^-7М) были зафиксированы одиночные ионные каналы с проводимостью 15-20 Пс, а также комбинированные ионные каналы филипин-нистатин А1 и филипин-амфотерицин В. Проводимость филипинового канала намного превышает значение хорошо изученного амфотерицинового канала. Обнаруженные каналы находятся в открытом состоянии и служат для транспорта, в основном, моновалентных катионов и анионов. Увеличение проводимости зависит от типа ионов в растворе и не зависит от мембранного потенциала. Возрастание тока через мембрану сопровождается мгновенными последовательными изменениями мембранного потенциала и не зависит от предыдущего значения приложенного к мембране потенциала. Филипиновые каналы имеют два основных состояния — проводящее и непроводящее. За время жизни канала в мембране наблюдали редкие переходы в непроводящее состояние. Можно предположить, что филипиновый канал, также как амфотерициновый, собирается из двух полупор, находящихся по разные стороны мембраны. Наблюдали также нарастание проводимости при добавлении филипина по одному сторону мембраны, а по другую сторону — нистатина А1 или амфотерицина В. Филипин, при введении его только с одной стороны мембраны, не приводит к увеличению проводимости в концентрации 10^-7М, однако при добавлении его с противоположной стороны мембраны, резко увеличивается проводимость мембраны.

Таким образом, в основе механизма действия филипина лежит формирование им в стерин-содержащих мембранах ионных каналов с определенным размером. Филипин взаимодействует со стеринами клеточных мембран, образуя в них ионные каналы, то есть является мембраноактивным и каналообразующим соединением.

ХАРАКТЕРИСТИКА СОСУДИСТОЙ ПАТОЛОГИИ ПРИ БАКТЕРИАЛЬНЫХ ГНОЙНЫХ И БАКТЕРИАЛЬНО-ГРИБКОВЫХ МЕНИНГИТАХ У ДЕТЕЙ

Скрипченко Н.В., Трофимова Т.Н., Иванова М.В., Иванова Г.П., Вильниц А.А., Егорова Е.С.
ФГУ «Научно-исследовательский институт детских инфекций», ФМБА России, г. Санкт-Петербург, Россия

Отличительной особенностью генерализованных инфекций, в том числе и нейроинфекций, является нарушение системы гемостаза, выраженность изменений которого определяет характер течения и исходы заболевания.

Цель — исследовать характер сосудистой патологии при бактериальных гнойных и бактериально-грибковых менингитах у детей.

Материалы и методы. Обследовано 30 больных, из них 25 — с бактериальными гнойными менингитами (ме-
ЗНАЧИМОСТЬ ОПРЕДЕЛЕНИЯ АЛЛЕЛЬНОГО СОСТОЯНИЯ ПЯТОЙ ХРОМОСОМЫ У CANDIDA ALBICANS

Смолина Н.А., Маркошашвили Д.Т., Игнатьева С.М.
НИИ медицинской микологии им. П.Н. Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

SIGNIFICANCE OF ALLELE STATE DETERMINATION OF THE FIFTH CHROMOSOME IN CANDIDA ALBICANS

Smolina N.A., Markoashvili D.T., Ignatieva S.M.
Kashkin Research Institute of Medical Mycology, SEI APE SPb MAPE, Saint Petersburg, Russia

Введение. Оппортунистический патоген C. albicans в дрожжевой фазе — одноклеточный организм размером 6–10 мкм. Известно, что C. albicans способна существовать в двух морфологических состояниях — «белая фаза» и «матовая фаза». Фазовый переход обусловлен высокочастотным переключением генотипа с одного типа спаривания на другой. Локус генов MTL, ответственный за тип спаривания, располагается на пятой хромосоме. Различают два типа спаривания — тип а и тип σ, которые реализуются за счет выхода локуса в гомозиготное состояние. К спариванию способны только штаммы с противоположными типами спаривания. «Матовая фаза» способна к повышенной инвазивной активности.

Материалы и методы. Штаммы C. albicans клинирировали на агаре Сабуро с целью получения генетического единства потомков. По результатам клонирования определяли штаммы, способные к переключению фенотипа и не способные к нему. Далее использовали и другие штаммы. Выделение ДНК шло по ранее оптимизированному методу изоамил-хлороформной экстракции с применением стеклянных бус из жидкости. Затем ставили полимеразную цепочную реакцию (ПЦР). Для каждого штамма ПЦР проводили с двумя парами праймеров — к локусу MTLα и к локусу MTLβ. Для визуализации использовали электрофорез в агарозном геле. По результатам оценки размеров фрагментов был выбран 1,2% гель.

Результаты и выводы. Штаммы, способные к переключению фенотипа, были гомозиготными по локусу MTL и обладали генотипом либо MTLα/MTLα, либо MTLα/MTLβ. Штаммы, для которых не было зафиксировано переключения фенотипа, оказались гетерозиготными по локусу MTL. Таким образом, предварительное генотипирование клинических изолятов C. albicans по локусу MTL и определение аллельного состояния пятой хромосомы может иметь важное диагностическое значение. Штаммы, гомозиготные по пятой хромосоме, потенциально более патогенны, чем гетерозиготные.
иммунного ответа у больных с микогенной аллергией.

Материалы и методы. Обследовано 858 больных с различными аллергическими заболеваниями (бронхиальная астма, атопический дерматит, аллергический ринит). Критериями диагностики микогенной аллергии считали наличие специфических IgE в сыворотке крови к аллергенам грибов хотя бы одного из родов: *Penicillium*, *Aspergillus*, *Mucor*, *Candida*, *Cladosporium*, *Alternaria*, а также данные анамнеза.

Аллергологическое обследование проводили с применением MAST-панелей на 36 аллергенов (Hitachi Chemicals Diagnostic). Субпопуляционный состав лимфоцитов определяли иммуноцитохимическим методом с использованием моноклональных антител. Кислородзависимую бактерицидность нейтрофилов оценивали в НСТ-тесте, а также определяли фагоцитарную и киллерную активность по способности клеток поглощать и убивать *C. albicans*. Про dukцию ИФН-α определяли через 24 часа в супернатантах клеток крови с использованием коммерческих иммуноферментных тест-систем. Полученные результаты статистически обрабатывали с помощью программной системы STATISTICA for Windows (версия 6.0).

Результаты. У больных с микогенной аллергией, по сравнению с больными с аллергическими заболеваниями без микогенной аллергии, был достоверно выше уровень общего иммуноглобулина Е (740±152 против 493±111 ЕД/мл), что коррелировало со сниженной продукцией интерферона-α (361±117 против 496±252 пг/мл). Известно, что, наряду с интерфероном-γ, интерферон-α способен подавлять аллергологическую перестройку иммунной системы по Т-хеллер 2-му типу. У больных с микогенной аллергией наблюдали не только более тяжелое течение основного заболевания, по сравнению с группой больных без этого отягощающего фактора, но и более частые простудные заболевания.

Выводы. Недостаточность продукции интерферона-α на фоне высокой сенсибилизации к грибковым аллергенам является предпосылкой для частого рецидивирования вирусных инфекций, что, в свою очередь, будет отягощать течение основного заболевания. Следовательно, больные с микогенной аллергией нуждаются в назначении препаратов интерферона-α как для поддержания противовирусной резистентности, так и для снижения активности Т-хеллеров 2 типа, поддерживающих аллергическое воспаление.

СРАВНЕНИЕ АКТИВНОСТИ НЕКОТОРЫХ СТРОИТЕЛЬНЫХ БИОЦИДОВ В ОТНОШЕНИИ МИКРОМИЦЕТОВ-БИОДЕСТРУКТОРОВ

Соков А.М., Павлова И.Э., Маметьева А.А.

НИИ медицинской микологии им. Каширкина П.Н. ГОУ ДПО СПбМАПО, Санкт-Петербург, Россия

Цель работы – сравнительное изучение действия строительных биоцидов на рост микромицетов в лабораторных условиях на макетах строительных материалов.

Во всех опытах контрольным образцом являлся макет строительного материала, зараженный строительными микромицетами, но не обработанный биоцидом. Заражение образцов проводили следующим образом: взьем микромицета, приготовленного по оптическому стандарту мутности 5 Ед., пульверизатором наносили на образец до его полного смачивания. Обработку образцов биоцидом проводили после высыхания взвеси, затем их помещали в эксикатор, на дне которого находилась вода для создания повышенной влажности. Закрытый эксикатор помещали в терmostat при температуре 28 °С. На 28, 56, 84 сутки от начала эксперимента делали соскобы с образцов с площади 1 см² и засевали на агар Сабуро. Подсчитывали выросшие колонии микромицета-биодеструктора.

Результаты. При исследовании контрольных образцов бетоно-песчаной смеси, зараженной *A. fumigatus*, количество выделившихся колоний в период инкубации с 28 дней до 56 дней менялось незначительно (от 17 до 22 КОЕ/
см²), затем наблюдали возрастание количества КОЕ до 50 КОЕ/см² (Рис. 1). При обработке бетоно-песчаной смеси биоцидом «Neomid Bio ремонт», «Dekoprof» и «Санатекс» количество КОЕ/см² микромицета уменьшалось и практически полностью исчезало в период с 28 до 56 день, а к 84 дню появлялись единичные колонии (0-5 КОЕ/см²).

При заражении Aspergillus fumigatus шпаклёвки количество микромицетов в контроле до 84 дня менялось незначительно и составляло около 200 КОЕ/см² (Рис. 2). При обработке макетов из шпаклёвки биоцидом «Neomid Bio ремонт», «Санатекс» — с 0 до 6 КОЕ/см², а «Dekoprof» — с 140 до 160 КОЕ/см².

На деревянных образцах, зараженных Chaetomium globosum, в контроле количество грибов увеличивалось со 130 КОЕ/см² до 500 КОЕ/см² в период с 28 до 84 дня опыта; при обработке «Белсином» — с 80 до 300 КОЕ/см² за тот же период, «Силакра» — с 15 до 115 КОЕ/см², а при обработке «Dekoprof» — с 30 до 97 КОЕ/см² (Рис. 3).

Выводы.
1) При экспериментальном заражении бетоно-песчаная смесь менее подвержена микологическому поражению, чем шпаклёвка.
2) Для противогрибковой обработки образцов бетоно-песчаной смеси наиболее эффективен «Санатекс», для шпаклёвки — «Neomid Bio ремонт», для деревянных образцов – «Силакра».

ОСОБЕННОСТИ МОРФОГЕНЕЗА РАЗНЫХ ШТАММОВ CRYPTOCOCCUS NEOFORMANS, ВЫДЕЛЕННЫХ ИЗ ОКРУЖАЮЩЕЙ СРЕДЫ
Степанова А.А., Босак И.А., Синицик А.А.
НИИ медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

PECULIARITIES OF DIFFERENT STRAINS CRYPTOCOCCUS NEOFORMANS MORPHOGENESIS ISOLATED FROM ENVIROMENT
Stepanova А.А., Bosaк I.A, Sinitskaya I.A.
Kashkin Research Institute of Medical Mycology, SEI APE SPb MAPE, Saint Petersburg, Russia

Введение. Ранее нами (Васильева и др., 2005–2007) на примере 16 штаммов C. neoformans клинических изолятов показано значительное варьирование ультраструктуры зрелых клеток в популяции одного и более штаммов. Представляло интерес выяснить особенности ультраструктурной организации природных изолятов в сравнении с клиническими штаммами.

Цель работы — изучить закономерности морфогенеза клеток C. neoformans, выделенных из окружающей среды.

Материал и методы. Изучали клетки 4-х изолятов (ГП1, ГП2, ГП3, ГП4), выделенные из голубиного помета. Культуры гриба выращивали в течение 3, 7 и 10 суток в термостате при 37 ºС на среде Сабуро (рН — 5,7) и фиксировали для трансмиссионной электронной микроскопии по стандартной методике.

Результаты. Для клеток, сразу отделившихся от материнских, было характерно: высокое ядерно-цитоплазматическое отношение, умеренное содержание митохондрий со слабоконтрастными мембранами, плотный цитозоль, насыщенный свободными рибо-сомами, слаборазвитая эндомембранная система, отсутствие вакуолей и запасных веществ. Последующий изодиаметрический рост клеток был обусловлен формированием центральной вакуоли и увеличением ее размеров. Происходило это на фоне пролиферации числа митохондрий, увеличения их размеров и плотности расположения крист. Также отмечали активность ядрышка — увеличение размеров и доли гранулярного компонента. Эти изменения коррелировали с новообразованием свободных и прикрепленных рибосом в растущей клетке. Мы не обнаружили в растущих клетках изолятов гриба заметного варьирования по числу, топографии, форме и ультраструктуре митохондрий. Особен-
обретают зрелые клетки изученных изолятов криптококка было то, что они не различались между собой и в пределах одной культуры по типу и количеству аккумулируемых запасных веществ. Они содержали только два типа запасных веществ: липидные включения и розетки гликогена, причем первые доминировали. Последующий переход клеток к старению сопровождался уменьшением числа запасных веществ, органелл, свободных рибосом, а также усилением вакуолизации.

Вывод. Морфогенез клеток изученных природных изолятов проходил однотипно.

ЭЛЕКТРОННО-МИКРОСКОПИЧЕСКОЕ ИЗУЧЕНИЕ ПОРОВОГО АППАРАТА СЕПТ TRICHOPHYTON TONSURANS MALMSTEN

Степанова А.А., Савицкая Т.И., Синицкая И.А., Краснова Э. В.
НИИ медицинской микологии им. П.Н. Кашкина СПб МАПО, Санкт-Петербург, Россия

Введение. T. tonsurans вызывает, в основном, микоз волосистой части головы, реже — кожи и ногтей человека. Изучение закономерностей биологии его развития и строения септ и порового аппарата имеют важное значение для диагностической оценки тканевых форм гриба.

Цель работы — выяснить общую тенденцию развития клеток вегетативного мицелия этого вида дерматомицета в условиях культуры и особенности тонкого строения септ и их порового аппарата.

Материал и методы. В работе использовали штамм T. tonsurans Malmsten (РКПГF-219) из коллекции НИИ медицинской микологии им. П.Н. Кашкина СПб МАПО Росздрава, выделенный от больного трихофитией (А.П., 20.01.1987). Культуры гриба выращивали на агаризованной среде Сабуро в термостате при 27 °С и исследовали через 5, 10, 20 и 30 дней после посева. Кусочки агара с разных участков колоний гриба фиксировали для ТЕМ.

Результаты. Зрелые клетки гиф воздушного и субстратного мицелиев не различались между собой по размерам и форме ядер, особенностям строения латеральной клеточной стенки, уровню насыщенности запасными веществами и их типу, а также степени развития компонентов эндомембранной системы. Нитчатые клетки мицелия содержали два интерфазных ядра с умеренным уровнем хроматизации.

Основными признаками дифференциации клеток гиф воздушного мицелия были: формирование мелких вакуолей и синтез небольшого числа запасных веществ в форме липидных включений и гликогена; субстратного: существенное увеличение числа митохондрий и синтез большего количества и числа запасных веществ (липидные включения, гликоген, фиброзиновые тельца). Цитозоль растущих клеток отличался умеренной электронной плотностью и наличием большого числа свободных рибосом.

Клеточная стенка в два раза более толстая (0,2 мкм), чем аналогичная клетка воздушного мицелия, состояла из двух слоев: верхнего тонкого (0,03 мкм), темного и гомогенного, а также нижнего — более широкого и фибриллярного. Клетки мицелия снабжены однослойными клиновидными светлыми септами толщиной 0,12 мкм. В центре септ имела место сквозная пора диаметром 0,07 мкм, вблизи которой располагались тельца Воронина в числе от 1 до 4. Форма телец Воронина сферическая (0,18 мкм), содержащее — гомогенное, высокой электронной плотности. Снаружи они ограничены трехслойной мембраной высокой электронной плотности.

Старение гиф воздушного и субстратного мицелиев протекало сходно: уменьшался диаметр клеток, размеры ядер и численность органелл цитозоля. Заметно возрастила степень вакуолизации цитоплазмы клеток, а также электронная плотность цитозоля. Отмечали активный лизис запасных веществ, что совпадало с переходом колонии гриба к формированию многочисленных макроконидий.

УЛЬТРАСТРУКТУРНЫЕ АСПЕКТЫ СТАРЕНИЯ КЛЕТОК НЕКОТОРЫХ ВИДОВ РОДА ASPERGILLUS

Степанова А.А., Синицкая И.А.
НИИ медицинской микологии им. П.Н. Кашкина СПб МАПО, Санкт-Петербург, Россия

Введение. Данные по старению клеток патогенных грибов важны для понимания закономерностей их морфогенеза «в норме» и для выяснения наличия или отсутствия специфических особенностей протекания этого процесса, например, при изучении действия некоторых антимикотиков на тонкое строение грибной клетки in vitro и in vivo.

Цель работы — на примере штаммов 5-ти видов аспергиллов, выделенных от пациентов, изучить особенности старения клеток вегетативного мицелия и конидиогенного аппарата.

Материал и методы. С помощью методов TEM изучали клетки культур у штаммов 5 видов рода...
Aspergillus: A. niger van Tieghem. (РКПГФ-1124), A. terreus Thom (РКПГ–1275/1397), A. sydowii (Bain. et Sart.) Thom et Chuzch (РКПГФ–1241/797), A. flavus Link: Fr. (РКПГФ-954/5425) и A. fumigatus Fres. (РКПГФ-1172) из коллекции НИИ медицинской микологии им. П.Н. Кашкина. Культуры первых трех штаммов были выделены от больных отомикозом, A. flavus — из биоптата абсцесса, A. fumigatus — из промывных вод бронхов у больных аспергиллезом. Культуры грибов выращивали на среде Чапека в термостате при температуре 27 °С и фиксировали через 2, 3, 5, 10 и 20 дней после посева по стандартной методике.

Результаты. Ультраструктурные изменения стареющих клеток вегетативного мицелия и различных типов клеток конидиогенного аппарата у изученных видов аспергиллов протекали довольно сходно: они сильно вакуолизировались, обеднялись органеллами, запасными веществами, свободными рибосомами и цитозолем. Из компонентов цитоплазмы первыми дегенеративным изменениям в одних клетках (независимо от их типа) подвергались митохондрии, тогда как в других — ядра, а в третьих — одновременно и те и другие. В пределах колоний культур изученных видов аспергиллов процессы старения первоначально отмечали в клетках вегетативного мицелия, а затем — в конидиеносце и головке, стеригмах первого и второго рядов. Старение и отмирание клеток вегетативного мицелия вблизи конидиогенного аппарата имело место по завершении ими роста и формирования стеригм первого (A. fumigatus) и второго (A. niger, A. flavus, A. terreus, A. sydowii) рядов. В латеральных клеточных стенках стареющих клеток происходило снижение контраста и плотности расположения составляющих их микрофибрилл. Далее стенки сильно утончались и деформировались; из их состава (A. fumigatus, A. terreus, A. flavus) исчезал фибриллярно-гранулярный слой и появились локальные разрывы. По мере перехода клеток вегетативного мицелия и конидиогенного аппарата к старению, тельца Воронина из состава порового аппарата исчезали, их сменяли темные гомогенные пробки, локализующиеся непосредственно в просвете септальной поры. Общий ход старения клеток у культур изученных видов аспергиллов в системе вегетативный мицелий → конидиогенный аппарат проходил по соответствующему градиенту: вегетативный мицелий → конидиеносец → головка → стеригмы первого ряда → стеригмы второго ряда.

ВОЗМОЖНОСТЬ ВЫДЕЛЕНИЯ ЛЕТУЧИХ ХЕМОСИГНАЛОВ У ЛАБОРАТОРНЫХ ЖИВОТНЫХ, ВЛИЯЮЩИХ НА СОСТОЯНИЕ ИНТАКТНЫХ ОСОБЕЙ ПРИ БИОЛОГИЧЕСКИХ ДОКЛИНИЧЕСКИХ ИСПЫТАНИЯХ ИММУНОБИОЛОГИЧЕСКИХ ЛЕКАРСТВЕННЫХ СРЕДСТВ
Суринов Б.П., Шарецкий А.Н., Абрамова М.Р.
Медицинский радиологический научный центр РАМН, Обнинск, Россия

A POSSIBILITY OF THE SECRETION OF VOLATILE CHEMOSIGNALS IN LABORATORY ANIMALS AFFECTING THE STATE OF INTACT INDIVIDUALS AT BIOLOGICAL PRECLINICAL TESTS
Surinov B.P., Sharetsky A.N., Abramova M.R.
Medical Radiology Research Centre, Russian Academy of Medical Sciences, Obninsk, Russia

Цель исследования — показать возможность дистантного влияния на животных летучих хемосигналов, выделяемых при бактериальном, микологическом экспериментальном заражении или при испытаниях лекарственных средств, в частности, после введения тимусзависимых и тимуснезависимых антигенов или иммуномодуляторов.

Материалы и методы. Эксперименты выполнены на высокоинбредных лабораторных мышах, самцах и самках. Тимусзависимый и тимуснезависимый антиген — эритроциты барана (ЭБ) и бактериальный эндотоксин липолипополисахарид (ЛПС) — вводили внутрибрюшинно. Влияние на поведенческие реакции (аттрактивность-аверсивность) оценивали по предпочтению-избеганию интактными мышами «укрытий», в которых находились образцы мочи сравниваемых групп животных. Иммунную реактивность определяли методом Каннигема по количеству антителообразующих клеток и селезенке мышей.

Результаты. Под влиянием субоптимальной и оптимальной доз ЭБ мыши продуцируют аттрактивные, а после введения сверхоптимальной дозы — аверсивные (отталкивающие) интактных реципиентов хемосигналы. Тимусзависимый антиген — ЛПС — формировал аверсивные хемосигналы. Наиболее значительно данные антигены модифицировали зависимую от генотипа аттрактивность мышей-самцов к самкам, необходимую для реализации репродуктивной стратегии. Иммуномодуляторы: дексаметазон — синтетический глюкортикоид — индуцировал выделение хемосигналов с иммуносупрессивными и аверсивными свойствами; тимоген — синтетический аналог одного из факторов тимуса — снижал иммуносупрессивный и аттрактивный эффект хемосигналов, обусловленный тимусзависимым антигеном.
Следовательно, для предотвращения искажения результатов при выполнении биологических испытаний, необходимо исключать возможность обонятельного контакта между подопытными группами животных.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант №07-04-00284.

МЕРЫ ПРОФИЛАКТИКИ И ОРГАНИЗАЦИИ МИКОЛОГИЧЕСКОГО МОНИТОРИНГА В ПОМЕЩЕНИЯХ ЛПУ

Суханова Ю.А.

НИИ медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

Цель – организация микологического мониторинга воздушной среды в помещениях лечебных учреждений.

Методы. Посев воздуха осуществляли с помощью импакторного пробоотборника ПУ-1Б (АОЗТ «Химко», Москва) на пластинки агара Сабуро и сусло-агара в одноразовые пластмассовые стерильные чашки Петри в режиме 250 л/мин. Чашки инкубировали в термостатах при температуре 28 °С и 37 °С. Результаты учитывали через 3–21 день.

Результаты. Исследована микобиота оперблока больницы города Санкт-Петербурга в течение года согласно СанПиН 2.1.3.1375-03: «Гигиенические требования к размещению, устройству и эксплуатации больницы, родильных домов и других лечебных стационаров». Нами исследован воздух следующих помещений: особо чистых (класс А) – операционные, родильные залы, асептические боксы для гематологических и ожоговых пациентов, палаты для недоношенных детей, асептический блок аптек, чистые и чисто-контрольные помещения операционных и родильных залов; чистых (класс Б) – процедурные, предоперационные, палаты реанимации, комнаты сбора грудного молока, фасовочные аптеки, помещения микробиологических и клинических лабораторий; условно чистых (класс В) – палаты хирургических отделений, коридоры, примыкающие к операционным и родильным залам, смотровые, боксы и палаты инфекционных отделений, ординаторские, кладовые чистого белья. Плесневые и дрожжевые грибы в 1 м³ воздуха не должны быть в помещениях классов А.Б.В.

В помещениях класса А преобладали: Cladosporium sp., Geotrichum sp., в помещениях класса Б — Aspergillus fumigatus, A. niger, Aureobasidium sp., в помещениях класса В — A. fumigatus, Aureobasidium sp., Mucor sp.

Установлены причины попадания спор микромицетов в воздух оперблока:
- отделение не оснащено высокоэффективной системой вентиляции;
- в соседних помещениях отделения (лестницы) были выявлены очаги биодеструкции, связанные с протечками из водных коммуникаций здания;
- для санитарной обработки помещений применяли малоэффективные в отношении грибов дезинфектанты;
- персонал не обладал знаниями и практическими навыками профилактики микотических заболеваний;
- не проводили микологического мониторинга воздуха в помещениях оперблока.

Было изучено противогрибковое действие дезинфектантов, применяемых в обследованных помещениях. В отношении выявленных микромицетов фунгицидную и функгистатическую активности проявили следующие дезинфектанты: клиндезин, альфадез, перекись водорода, лизафин, мистраль, дезофран, бионол, хлормикс в концентрациях, рекомендованных фирмами-производителями.

Заключение.
1. Дезинфектанты из групп четвертичных аммониевых осадков, перекисных и альдегидсодержащих соединений проявили наибольшую эффективность против микромицетов — изолятов из воздуха помещений в ЛПУ, поэтому они рекомендованы нами для санитарной обработки помещений оперблок.

2. По нашей рекомендации были устранены очаги биодеструкции, налажена система вентиляции и организован постоянный микологический мониторинг.

ВЛИЯНИЕ ЭКЗОМЕТАБОЛИТОВ АССОЦИАТИВНОЙ МИКРОБИОТЫ НА ПРОЛИФЕРАТИВНУЮ АКТИВНОСТЬ CANDIDA ALBICANS

Тимохина Т.Х. 1, Николенко М.В. 1, Варницына В.В.1, Леонов В.В.2

1 ГОУ ВПО Тюменская государственная медицинская академия, г. Тюмень; 2 ГОУ ВПО Югорский государственный университет, Ханты-Мансийск, Россия

Цель — изучить влияние экзометаболитов ассоциативной микробиоты на пролиферативную активность Candida albicans.

ВАЛИЯНИЕ ЭКЗОМЕТАБОЛИТОВ АССОЦИАТИВНОЙ МИКРОБИОТЫ НА ПРОЛИФЕРАТИВНУЮ АКТИВНОСТЬ CANDIDA ALBICANS

Timokhina T.H.1, Nikolenko M.V.1, Varnitsina V.V.1, Leonov V.V.2

1 Tyumen medical academy, Tyumen; 2Ugra state university, Ugra, Russia

THE INFLUENCE OF EXOMETABOLITES OF THE ASSOCIATIVE MICROBIOTA IN THE PROLIFERATIVE ACTIVITY OF CANDIDA ALBICANS

Timokhina T.H.1, Nikolenko M.V.1, Varnitsina V.V.1, Leonov V.V.2

1Tyumen medical academy, Tyumen; 2Ugra state university, Ugra, Russia

Candida spp. являются часто встречающимися компонентом микробоценозов тела человека. Установлено, что дрожжевые грибы способны усиливать свой патогенный вклад в ассоциации с бактериями, приводя к осложнениям и летальному исходу пациентов. На наш взгляд, представляется актуальным изучение механизмов формирования микробиальных ассоциативных механизмов, влияющих на пролиферативную активность Candida albicans.

Цель исследования — изучить влияние экзометабо-
МИКОЗЫ ЛИЦА: СЛУЧАЙ ИЗ ПРАКТИКИ
Тихоновская И.В., Адаскеевич В.П., Шафранская Т.В.
Витебский государственный медицинский университет, Витебск, Беларусь

ТИНЕА ОФ ТЕЙ ФЭСЕ: КАСЕС РОПОРТ
Тихановская И.В., Адаскеевич В.П., Шафранская Т.В.
Витебский государственный медицинский университет, Витебск, Беларусь

Цель работы — изучить частоту встречаемости микозов лица изолированно и в сочетании с другими дерматозами.

Методы и средства. Обследовали пациентов, проходивших лечение в микологическом отделении Витебского областного кожно-венерологического диспансера в течение 2008 года. Диагноз у всех пациентов подтверждали микроскопическими и культуральными исследованиями.

Результаты. Основную часть пациентов микологического отделения составили дети с микроспорией волосистой части головы и/или гладкой кожи. Из пролеченных 125 детей при поступлении только у двух (1,6%) с микотическим поражением кожи лица были ошибочные диагнозы — себорейный дерматит и атопический дерматит. У 6 из остальных 119 взрослых пациентов (5,4%), которые лечились с диагнозами: микоз стоп, кистей (32 пациента), микоз туловища, складок (66), онихомикоз (14), было поражение кожи лица, причем только у одной пациентки без поражения гладкой кожи и/или ногтей. Пациенты поступали с диагнозом: контактный дерматит — 2 пациента, пиодермия -1, красная волчанка — 2, простой грипп, осложненный пиодермией — 1. Таким образом, у 5,4% больных с микотическими поражениями кожи лица были ошибочные диагнозы — себорейный дерматит и атопический дерматит. У 6 из остальных 119 взрослых пациентов (5,4%), которые лечились с диагностами: микоз стоп, кистей, микоз туловища, складок, онихомикоз, было поражение кожи лица; причем только у одной пациентки без поражения гладкой кожи и/или ногтей. Пациенты поступали с диагнозом: контактный дерматит — 2 пациента, пиодермия -1, красная волчанка — 2, простой грипп, осложненный пиодермией — 1. Таким образом, у 5,4% больных с микозами стоп, туловища или онихомикозами мы можем ожидать поражения кожи лица. Причиной диагностических ошибок у наблюдаемых нами лиц послужили: недостаточный осмотр пациента на амбулаторном приеме, сочетание микоза лица с другими заболеваниями (атопический дерматит, дискоидная красная волчанка, псориаз), нетипичные проявления микотической инфекции.
ЧАСТОТА ВЫЯВЛЯЕМОСТИ ГРИБОВ РОДА Candida при язвенной болезни двенадцатиперстной кишки, ассоциированной с Helicobacter pylori

Ткаченко Е.И.1, Шевяков М.А.2, Абалуева Е.Б.1, Барышникова Н.В.1, Матвеева Н.В.1

1СПбГМА имени И.И. Мечникова; 2НИИ медицинской микологии им. Ткаченко Е.И.1, Шевяков М.А.2, Авалуева Е.Б.1, Санкт-Петербург, Россия

Цель исследования — определить частоту встречаемости Candida spp. в слизистой оболочке антрального отдела желудка у больных язвенной болезнью двенадцатиперстной кишки (ЯБДК), ассоциированной с Helicobacter pylori.

Объекты и методы. Под наблюдением находилось 79 больных ЯБДК, ассоциированной с H. pylori. Верификацию микроорганизма проводили с помощью быстрого уреазного теста и полимеразной цепной реакции (ПЦР) с детекцией гена ureC (предиктор наличия инфекции H. pylori). Всем обследуемым выполняли фиброколоноскопию и гистологическое исследование. При выявлении инфицирования язвы грибами проводили широкий спектр терапии.

Результаты. Установлено, что у больных ЯБДК, ассоциированной с H. pylori, встречаются следующие штаммы Candida albicans: ген sap2 — у 16%, ген hwp1 — у 30%, ген alp7 — у 29% пациентов.

Выводы. При достаточно высокой частоте встречаемости генов, кодирующих синтез факторов адгезии и инвазии Candida albicans, можно говорить о развитии дисбиоза желудка в ответ на длительное персистирование H. pylori в организме человека. В связи с этим возникает необходимость в разработке новых подходов к коррекции нарушений микробиоты серозных органов желудочно-кишечного тракта (пробиотиками) — антагонистами дрожжеподобных грибов.

COВРЕМЕННЫЕ ОСОБЕННОСТИ ТЕРАПИИ ВАГИНАЛЬНЫХ КАНДИДОЗОВ

Уткин Е.В., Лукина Н.А.

Кемеровская государственная медицинская академия, МУЗ ДГКБ №5, Кемерово, Россия

MODERN PECULIARITIES OF VAGINAL CANDIDOSIS THERAPY

Utkin E.V., Lukina N.A.

Kemerovo State Medical Academy, Children's Urban Clinical Hospital №5, Kemerovo, Russia

В настоящее время существуют различные варианты лечения вагинальных кандидозов (ВК). В частности, многие исследователи считают, что большинство случаев ВК поддается терапии местными противогрибковыми средствами, поэтому следует лечить не расстройство вагинальных флор, а только инфекцию, вызванную Candida spp. В то же время с учетом того, что заболевание возникает в результате аутоинфицирования как следствие нарушения состава микрофлоры влагалища и дефицита компонентов местного иммунитета, некоторые исследователи рекомендуют дополнительную коррекцию микробоценоза влагалища с помощью биотерапевтических препаратов.

Цель работы — сравнение эффективности двух вариантов лечения острого ВК.

Объекты и методы. Было проведено обследование и
лечение 55 молодых женщин с клинически и микробиологически подтвержденным диагнозом острого ВК. Критерием включения в обследуемую группу были молодые нерожавшие женщины с первым эпизодом ВК в своей жизни; критерием исключения — резидуальное заболевание или наличие инфекции. При этом 30 пациенткам (I группа) было проведено только местное лечение препаратом гиностерол (2% бутоконазола нитрат — 5 г). Вторую группу составили 25 женщин, в дополнение к такой же терапии, на втором этапе была добавлена пробиотика лактобацилла (включающий в себя 2 штамма лактобацилл Lactobacillus rhamnosus GR-1 и L. reuteri RC-14) по 1 капсуле 1 раз в день в течение 15 дней. Эффективность оценивали сразу же по завершению курса местной терапии, через 4 недели после завершения курса лечения и через 3 месяца.

После завершения местной терапии у 27 женщин I группы и у 23 — из II группы констатировали выздоровление и, соответственно, у 3-х и 2-х — улучшение. Эффективность лечения через 4 недели составила 86,7% у пациентов I группы и 96% — у пациентов II группы. В течение 3-х месяцев резидуального заболевания был зарегистрирован у 4 пациенток I группы и у 1-й — II группы. Следует отметить, что полученные показатели не имели статистически значимых различий (p=0,07).

Следовательно, при лечении острых форм ВК высокую эффективность имеет местное применение бутоконазола, тогда как дополнительное применение пробиотиков в данной ситуации не способствует увеличению эффективности проводимой терапии.

В настоящее время существует тенденция к росту дерматомикозов, в частности онихомикозов, которая объясняется высокой контагиозностью и рецидивирующим течением заболевания, что вызывает аллергическую реакцию организма, приводя к развитию вторичного иммунодефицита. По данным научной литературы, источником распространения грибков, в случае возникновения рецидивов, служит ногтевое ложе, в особенности его проксимальная часть. Наличие сопутствующих заболеваний (нарушение кровоснабжения конечностей, сухость кожи, гиперкератоз, ожирение) усугубляет течение микозов. Сочетание системной терапии с предварительным удалением ногтевых пластинок приводило к сокращению сроков лечения до двух месяцев, по сравнению с четырьмя месяцами терапии только системными антигрибковыми препаратами. При этом эффективность лечения возрастала с 86% до 96%.

Мы изучали возможность применения 20% резорциновых мазей на основе безводного ланолина и калийного мыла, которые изготавливали на базе производственной аптеки Г. Казани, по рецепту врача-дерматовенеролога, для амбулаторного лечения онихомикоза.

Лечение проводили 10 больным, из которых 5-ти — накладывали на ногтевые пластинки 20% резорциновую мазь на основе безводного ланолина на 72 часа, 5-ти — мазь на основе состава «мыло калийное : глицерин : вода в соотношении 5 : 2 : 1». Контрольную группу составили 4 больных, которым удаление ногтевых пластинок выполняли традиционным способом по методу А.Н. Аравийского, после предварительного накладывания 50% мази калия йода на основе безводного ланолина с последующим механическим удалением ногтевой пластинки. Лечение проводили при контроле за картиной периферической крови с определением лейкоцитарной формулы. До и после лечения делали микробиологические посевы для выявления этиологического агента заболевания. При посевах до лечения были найдены Candida albicans — у 2 больных, C. albicans в сочетании со Staphylococcus epidermiditis — у 2 больных, Aspergillus в сочетании с Trichophiton rubrum — у 2 больных, Aspergillus в сочетании со Staphylococcus aureus — у 2 больных, Aspergillus в сочетании со Trichophiton sp. — у 2 больных. Поскольку резорцин в концентрации более 15% обладает выраженными кератолитическим и фунгицидным действием, постольку применение резорциновой мази сопровождалось исчезновением грибковых поражений. В картине периферической крови был выявлен возросший уровень эозинофилов в крови составлял 1,75±0,25 и 1,0±0,003 соответственно. До лечения картина заболевания была ярко выражена у всех больных. После применения 20% резорциновой мази на изучаемых основах безводного ланолина наблюдалось полное размягчение ногтевых пластинок, они приобрели латексподобную консистенцию, что позволило их полностью и безболезненно удалить, однако, при применении мази на основе состава «мышло калийное : глицерин : вода» в соотношении 5 : 2 : 1 размягчение ногтевых пластинок происходило гораздо быстрее, позволяя удалить их уже через 1 сутки, что связано с размягчающим действием на кератин мыльной основы.

Таким образом, ввиду наличия ярко выраженного кератолитического и фунгицидного действий у резорцина, применение 20% резорциновой мази на изучаемых основах скользило уменьшение сроков лечения для местного лечения онихомикоза.
ОСОБЕННОСТИ МИКРОБНОГО СОСТАВА И МИКОТИЧЕСКАЯ КОЛОНИЗАЦИЯ КОЖИ ПРИ ПСОРИАЗЕ

Фаизуллина Е.В., Фаизуллин В.А., Бригаднова А.Ю.
ГОУ ВПО Казанский государственный медицинский университет МЗ РФ, ООО «Центр Дерматологии», г. Казань, Россия

PECCULARITIES OF MICROBIAL COMPOSITION AND MYCOTIC COLONIZATION OF SKIN IN PSORIASIS

Faizullina E.V., Faizullin V.A., Brigadnova A.Yu.
Kazan State Medical University, «Dermatology Center», Kazan, Russia

Цель исследования — изучение микробного состава кожи при псориазе с последующим назначением патогенетического лечения.

Объекты и методы. Обследовано 78 больных с псориазом, среди которых 48 человек имели ограниченную форму заболевания (I группа), 21 — среднетяжелую форму болезни (II группа), 9 — тяжелую форму (III группа). Благоприятное течение болезни наблюдалось у 61,5% пациентов, среднетяжелое — у 27%, тяжелое — у 11,5%. Всех больных обследовали клинически (сбор анамнеза, вычисление индекса PASI) и микологически — с выделением чистой культуры гриба. Идентификацию грибов (ферментацию углекислого газа в среде RPMI-1640 с добавлением 10% эмбриональной культуры макрофагов мышей линии Balb/c, 20% эмбриональной культуры макрофагов мышей линии Balb/c) проводили по общепринятым методам.

Результаты. Структура грибковой колонизации при ограниченных формах псориаза была следующей: Malassezia furfur — 46,6% случаев, Candida spp. со Staphylococcus aureus — 28,5%, ассоциации Malassezia furfur и Candida spp. — 19,5%, мицелиальные дерматомицеты — 5,4%. У больных с легкой формой болезни преобладал кандидозный тип колонизации (I группа), стафилококковый — в 12,5%, ассоциации C. neoformans и мицелиальные дерматомицеты — в 8,3%, при тяжелых формах болезни (индекс PASI более 30) смешанную грибковую колонизацию наблюдали достоверно чаще — в 95% случаев. Отчетливо преобладали формы высева Candida spp., ассоциированные с S. aureus (41,7%), Aspergillus spp. и мицелиальными дерматомицетами. Грибово-бактериальные ассоциации поддерживают хроническое воспаление в области пораженных высыпаний, приводят к затяжному течению болезни, уменьшению сроков стабильной ремиссии.

Выводы. 1. У больных с легкой формой болезни преобладает кандидозное обсеменение со стафилококком и Malassezia furfur (75,1%).

ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ РАЗНЫХ ШТАММОВ CRYPTOCOCCUS NEOFORMANS С МАКРОФАГАМИ

Филиппова Л.В., Васильева Н.В., Киселева Е.П., Фролова Е.В., Учеваткина А.Е.
НИИ медицинской микологии им. П.Н.Кашкина ГОУ ДПО СПб МАПО, Санкт-Петербург, Россия

PECCULARITIES OF INTERACTION OF DIFFERENT STRAINS OF CRYPTOCOCCUS NEOFORMANS WITH MACROPHAGE

Filippova L.V., Vasilieva N.V., Kiseleva E.P., Frolova E.V., Uchevatkina A.E.
Kashkin Research Institute of Medical Mycology, SEI APE SPb MAPE, Saint Petersburg, Russia

Актуальность. C. neoformans вызывает тяжелый менингоэнцефалит и диссеминированные инфекции преимущественно у больных СПИД и иммунодефицитами другого генеза. Ранее было показано, что возможность нивализации C. neoformans и характер течения криптококковой инфекции определяются не только степенью иммунодефицита, но и вирулентностью штамма. (Васильева Н.В., 2005 г.). Однако вопрос о механизме этого явления остается не ясным.

Цель исследования — оценить фагоцитарную и киллерную активность перitoneальных макрофагов мышей линии Balb/c и их способность к выработке NO (оксиду азота) при взаимодействии со штаммами C. neoformans разной вирулентности in vitro.

Материалы и методы. В качестве исследуемых культур использовали штаммы C. neoformans (РКПГ 1106, 1165, 1262, 1178, 1090, 1216, 1272), различающиеся по вирулентности in vitro.

Выводы. 1. В качестве исследуемых культур использовали штаммы C. neoformans (РКПГ 1106, 1165, 1262, 1178, 1090, 1216, 1272), различающиеся по вирулентности in vitro. Все штаммы были получены из Российской коллекции патогенных грибов и выделены от больных криптококкозом. Для определения вирулентности мыши-самцы линии Balb/c были инфицированы внутривенно дозой 1·10^6 кл/мл каждого штамма C. neoformans. В зависимости от уровня выживаемости, штаммы были условно разделены на две группы: сильновирулентные и слабовирулентные. Первичная культура макрофагов была получена из перitoneальной полости мышей-самцов линии Balb/c в возрасте 8–12 нед. Концентрацию клеток доводили до 1·10^5 кл/мл в среде RPMI-1640 с добавлением 10% эмбриональной телячьей сыворотки и гентамицина. В эксперименте использовали интактные клетки и предварительно обработанные ЛПС (E. coli 055:B5). После инкубации с крипто-
 kokkami определяли фагоцитарный индекс (окраска по Романовскому-Гимзе), продукцию NO оценивали спектрофотометрическим методом с использованием реактива Грисса. Киллерную активность оценивали путем сравнения процента жизнеспособных клеток грибов, инкубированных с макрофагами с контрольным ростом. Полученные результаты статистически обрабатывали по Стьюденту с помощью программной системы STATISTICA for Windows (версия 6.0).

Результаты и обсуждение. Установлена обратная корреляционная связь между степенью вирулентности различных штаммов C. neoformans и способностью макрофагов к их фагоцитозу (r = — 0,76, p<0,05) и киллингу (r = — 0,93, p<0,05) и более слабая прямая корреляционная связь с размером капсулы гриба (r= 0,67, p<0,05). Известно, что макрофаги слабо фагоцитируют C. neoformans in vitro, поэтому клетки гриба предварительно опсонизировали свежей 10% мышиной сывороткой. При этом выявили, что значительно повышается фагоцитарная, киллерная активность макрофагов у слабовирулентных штаммов, но гораздо меньше эффект опсонизации влиял на эти показатели у сильновирулентных штаммов. Таким образом, опсонизация клеток гриба и активация макрофагов ЛПС наиболее эффективно влияет на функциональную активность сильновирулентных штаммов. По-видимому, ЛПС связываясь с толл-рецепторами — 4 (TLR4) на поверхности макрофагов активирует продукцию провоспалительных цитокинов интерлейкина-8 и фактора некроза опухоли-α, которые по принципу аутокринной связи усиливают их киллерную активность. NO является одним из факторов кислороднезависимого пути микробоцидности. Способность индуцировать продукцию NO была слабой у всех исследованных штаммов грибов, не увеличивалась достоверно после их опсонизации сывороткой и не коррелировала со степенью вирулентности и размером капсулы гриба. Однако установлено, что сильновирулентные штаммы при инкубации с макрофагами, активированными ЛПС, ингибировали выработку оксида азота, а слабовирулентные — активировали ее.

НЕКОТОРЫЕ ОСОБЕННОСТИ МИКОТИЧЕСКОЙ ИНФЕКЦИИ У БОЛЬНЫХ АУТОСОМО-ДОМИНАНТНЫМ ИХТИОЗОМ

Фризин В.В., Глуshко Н.И., Фризин Д.В., Боровкова Д.А.

Казанский государственный медицинский университет; Казанский научно-исследовательский институт эпидемиологии и иммунологии; Республиканский клинический кожно-венерологический диспансер, Казань, Россия

SOME FEATURES OF MYCOTIC INFECTION AMONG PATIENTS WITH AUTOSOMIC-DOMINANT ICHTHYOSIS

Frizin V.V., Glushko N.I., Frizin D.V., Borovkova D.A.
Kazan State Medical University; Kazan Scientific Research Institute of Epidemiology and Microbiology; Republic Clinical Dermatovenerological Dispensary, Kazan, Russia

Цель работы — изучение особенностей клинической картины микозов стоп у больных аутосомно-домinantным ихтиозом.

Объекты и методы. Обследовано 172 больных аутосомно-домinantным ихтиозом в возрасте от 21 до 60 лет на наличие проявлений микотической инфекции на коже стоп. У 64 человек при лабораторном обследовании обнаружены элементы грибов или выделены в культуре. Микологические исследования патологического материала (чешуйки) проводили в два этапа: 1 - прямая микроскопия и 2 - посевы на питательные среды. Патологический материал забирали с очагов поражения у больных ихтиозом.

У 55 пациентов выявили сквамозно-гиперкератотическую форму микозов стоп, из которых у 11 были поражения гладкой кожи в виде эритемато-сквамозной формы микоза. У 9 осмотренных пациентов имели место мелкие поверхностные трещинки и шелушение на коже IV межпалцевой складки, едва заметное шелушение на коже сгибательной поверхности пальцев и примыкающих к ним участках подошв при отсутствии субъективных ощущений, что характерно как для больных ихтиозом, так и для больных микозом стоп.

При прямой микроскопии чешуек с обследуемых участков кожи стоп элементы грибов обнаружили у 6 больных аутосомно-домinantным ихтиозом. Выделение чистых культур грибов-возбудителей проводили в специальном стерильном боксе на среде Сабуро с пониженным содержанием углеводов и добавлением стрептомицина и пенициллина. У 7 пациентов выделяли Trichophyton rubrum, у 2 – T. mentagrophytes var. interdigitale.

Таким образом, указанные клинические проявления у больных аутосомно-домinantным ихтиозом можно расценивать как стертую форму микозов стоп, которая выявляется только при лабораторном исследовании.
ЦЕЛОФОРМ В ЛЕЧЕНИИ КАНДИДОЗА КРУПНЫХ СКЛАДОК КОЖИ

Фризин В.В., Фризин Д.В.
Казанский государственный медицинский университет, Казань, Россия

Основным недостатком ряда мазей и кремов является наличие основы, которая не способна впитываться в кожные покровы и создает благоприятные условия для прогрессирования воспалительного процесса. Применение лекарственных растворов и порошков при непосредственном контакте с кожей или с помощью фиксирующих повязок мало эффективно из-за кратковременности действия, требующего постоянного их нанесения на кожу или на повязку, которая, также как и мазевые основы, может создавать «эффект парника».

Цель работы - изучить эффективность препарата «Целоформ» в лечении пациентов с кандидозным поражением крупных складок при избыточной массе тела.

Объекты и методы. Под наблюдением находились 16 женщин с кандидозом крупных складок под молочными железами, живота и пахово-бедренных складок в возрасте 35-65 лет. Микроскопически выявляли элементы грибов Candida.

Все пациентки получали наружно «Целоформ» — целлюлозу формализованную, изготавливаемую из ваты медицинской хлопковой по ГОСТ 5556-81, которая представляет из себя мелкодисперсное порошкообразное средство с длиной волокон 20-50 мкм, не содержит каких-либо инофармацевтических включений. Все пациентки на протяжении 20 дней утром наносили на кожу складок «Целоформ», вечером — 1% раствор «Клотримазол».

Результаты. Через 7-8 дней от начала лечения кожа в очагах была сухая, исчезла гиперемия и незначительный зуд. Полностью прошли лифованые единицы в 1 мл культуральной жидкости отбирали ежечасно в течение 6 ч и заживление эпидермиса белесоватого цвета. Поверхность эрозий яркая, влажная, с мелкими пузырьками. Пациентки предъявляли жалобы на болезненность, особенно при движении, зуд и неприятный запах.

Целоформа не отмечали ни одного случая обострения кандидозного процесса. Применение препарата в лечении пациентов с кандидозным поражением кожи крупных складок при избыточной массе тела.

Выводы. К преимуществам назначения «Целоформа» относят высокую эффективность лечения, отсутствие побочных реакций и осложнений, а также системное действие, что подтверждает обоснованность его применения при воспалении кожи крупных складок у больных с избыточной массой тела.

АНТАГОНИСТИЧЕСКАЯ АКТИВНОСТЬ SACCHAROMYCES CEREVISIAE ПО ОТНОШЕНИЮ CANDIDA ALBICANS

Фролова Я.Н., Алешукина А.В.
ФГУН Ростов НИИ микробиологии и паразитологии, южный федеральный университет, Ростов-на-Дону, Россия

Цель — изучить антагонистическую активность Saccharomyces cerevisiae на рост дрожжеподобных грибов Candida albicans.

Дизайн эксперимента. Объект исследования — производственная раса хлебопекарских дрожжей Saccharomyces cerevisiae (Pak Gida Üretum ve Payarlama A.S., Турция). S. cerevisiae культивировали в стерилизной питательной среде (NaCl 0,5%, глюкоза 5%, 1 л воды) в течение 48 часов на магнитной мешалке (60 об/мин) при 37 °C. Пробы культуральной жидкости отбирали ежечасно в течение 6 ч и затем — 18, 24 и 48 ч от начала культивирования. Контроль роста S. cerevisiae — по изменению уровня pH, оптической плотности, жизнеспособности культуры и количеству колониеобразующих единиц в 1 мл культуральной жидкости. Пробы центрифугировали для получения надосадочной (активные метаболиты) и осадочной фракций (клеточный экстракт).

Пораженные участки кожи были ярко гиперемированы, с четкими границами, ярко эрозированными и мощным незаживающим язвенным некрозом. Жертвами заболевания становились в основном лица с деформациями из-за избыточной массы тела.

Результаты. Через 7-8 дней от начала лечения кожа в очагах была сухая, исчезла гиперемия и незначительный зуд. Полностью прошел процесс разрешения воспалительного процесса на всех участках, которые подвергались лечению.

Целоформа в лечении пациентов с кандидозным поражением кожи крупных складок под молочными железами, живота и пахово-бедренных складок в возрасте 35-65 лет. Микроскопически выявляли элементы грибов Candida.

Выводы. К преимуществам назначения «Целоформа» относят высокую эффективность лечения, отсутствие побочных реакций и осложнений, а также системное действие, что подтверждает обоснованность его применения при воспалении кожи крупных складок у больных с избыточной массой тела.
АНТИМИКРОБНАЯ АКТИВНОСТЬ НОВОГО ПРОИЗВОДНОГО АМИНОСПИРОВ — ЮК-96

Фурман О.С.1, Врынчану Н.А.1, Коротки Ю.В.2, Гриневич С.В.1, Балакир Л.В.1, Дудикова Д.М.1

1 ГУ «Институт фармакологии и токсикологии АМН Украины», г. Киев, Украина; 2 Институт органической химии НАН Украины, г. Киев, Украина

Цель работы — исследование антимикробной активности новых синтезированных производных аминоспиртов (шифр ЮК-96).

Результаты. Установлено, что МПК ЮК-96 в отношении C. albicans составляет 0,0015 мкг/мл. Вещество в концентрации 0,6 мкг/мл ингибирует рост и размножение S. aureus.

Выводы. Соединение ЮК-96 проявляет выраженные антивирусные свойства в отношении C. albicans и, по показателям МПК, имеет преимущество перед флюконазолом (МПК — 0,5 мкг/мл). ЮК-96 проявляет также ингибиторное действие в отношении золотистого стафилококка. В дальнейшем необходимо изучить спектр ингибиторной активности соединения для определения возможности создания на его основе нового препарата антимикробной направленности.

Контаминация плодово-овощной продукции условно-патогенными и аллергенными грибами

Халдеева Е.В., Лисовская С.А., Глушко Н.И., Лебедин Ю.С. *

Казанский НИИ эпидемиологии и микробиологии, г. Казань; * ООО «Хема», г. Москва, Россия

Микроскопические грибы являются обычными контанантами поверхности плодов и овощей. Долгое время микологии уделяли основное внимание изучению фитопатогенных грибов, т.е. грибов, представляющих опасность для самого растения, а также разработка способов борьбы с ними. В то же время не придавали особого значения возможному присутствию условно-патогенных и аллергенных грибов. Увеличение оборота плодово-овощной продукции между различными странами в последние годы сделало актуальным изучение особенностей её контаминации в зависимости от страны-производителя, а также сезона.

Цель работы — определение количественного и качественного состава микобиоты на поверхности овощей и фруктов.

Для проведения микологического обследования были выбраны томаты, огурцы, яблоки и апельсины, которые приобретали в оптовых, розничных торговых точках, а также в супермаркетах с сентября 2008 г. по март 2009 г. с периодичностью в 1 месяц.

Исследованием показано, что плодово-овощная продукция, представленная в супермаркетах, характеризуется либо очень низким, либо очень высоким уровнем грибковой контаминации, причем в зависимости от страны-производителя на поверхности плодов обнаруживали разные условно-патогенные виды. Так, на томатах, произведенных в России преобладали виды Candida spp., Rhodotorula rubra, Aspergillus terreus, а на импортных (Турция — виды Aspergillus flavus, A. niger, Paeclomyces spp. Для огурцов, яблок и апельсинов, на поверхности которых в ряде случаев в небольшом количестве (10^2-10^4 КОЕ/тампон) обнаруживали условно-патогенные виды Aspergillus flavus, A. niger и Candida spp., эта тенденция была выражена не столь явно, и, по-видимому, контаминация скорее обусловлена условиями хранения продукции. Также на поверхности плодов выявляли аллергенные виды Rhizopus nigricans, Alternaria alternata, Penicillium chrysogenum в количестве 10^2-10^4 КОЕ/тампон. Следует отметить, что фасовка продукции в закрытые полиэтиленовые пакеты значительно ускоряла ее порчу, создавая благоприятные
ЭТИОЛОГИЧЕСКАЯ СТРУКТУРА ЗООАНТРОПОНОЗНЫХ ДЕРМАТОМИКОЗОВ В Г. УФЕ ЗА 2001-2008 ГГ.

Хисматуллина З.Р., Мухамадеева О.Р., Алиева Г.А., Шаймарданова В.Н.
Башкирский государственный медицинский университет, Республиканский кожно-венерологический диспансер, г. Уфа, Россия

В последние годы во всем мире возрастает заболеваемость микозами различных органов, в том числе кожи. Следует отметить, что для правильного определения вида инфекционного агента, необходимо проведение комплексного лабораторного исследования, включающего в себя микроскопическую и культуральную диагностику с обязательного проведения микологического исследования, даже при отрицательном результате микроскопии полученных культур.

Мы провели анализ результатов посевов культур дерматомицетов, полученных от больных дерматомикозами (трихофития, микроспория), по данным бактериологического анализа патологического материала от больного. При анализе видового состава возбудителей дерматомикозов в г. Уфе за последние восемь лет наблюдали преобладание зоофильных возбудителей.

Выводы: наличие различных видов грибов-контаминантов на плодово-овощной продукции требует строгого соблюдения санитарно-гигиенических мер, а также разработки санитарных норм контроля грибковой обсемененности.

OPЫТ ЛЕЧЕНИЯ ИНВАЗИВНОГО ЗИГОМИКОЗА В САНКТ-ПЕТЕРБУРЕ

Хостелиди С.Н., Борзова Ю.В., Десятатик Е.А., Рыжков А.В., Чернопятова Р.М., Богомолова Т.С., Аравийский Р.А., Климко Н.Н.
НИИ медицинской микологии им. П.Н.Кашкина Санкт-Петербургской медицинской академии последипломного образования, кафедра клинической микологии, иммунологии и аллергологии ГОУ ДПО СПб МАПО Росздрава, Санкт-Петербург, Россия

ETIOLOGIC STRUCTURE OF ZOOANTHROPONOUS DERMATOMYCOSES OF UFA CITY IN 2001-2008 YEARS

Hismatullina Z.R., Mukhamadyeva O.R., Alyeva G.A., Shaimardanova V.N.
Bashkir State Medical University, Republic skin-venerologic dispensary, Ufa, Russia

В последние годы во всем мире возрастает заболеваемость микозами различных органов, в том числе кожи. Следует отметить, что для правильного определения вида инфекционного агента, необходимо проведение комплексного лабораторного исследования, включающего в себя микроскопическую и культуральную диагностику с обязательного лабораторного исследования, включающего в себя микроскопическую диагностику с обязательного проведения микологического исследования, даже при отрицательном результате микроскопии полученных культур.

Мы провели анализ результатов посевов культур дерматомицетов, полученных от больных дерматомикозами (трихофития, микроспория), по данным бактериологического анализа патологического материала от больного. При анализе видового состава возбудителей дерматомикозов в г. Уфе за последние восемь лет наблюдали преобладание зоофильных возбудителей.

Выводы: наличие различных видов грибов-контаминантов на плодово-овощной продукции требует строгого соблюдения санитарно-гигиенических мер, а также разработки санитарных норм контроля грибковой обсемененности.

EXPERIENCE OF TREATMENT OF INVASIVE ZYGOMYCOSIS IN SAINT-PETERSBURG

Kashkin Research Institute of Medical Mycology, Department of Clinical Mycology, Allergology and Immunology of Medical Academy of Postgraduate Education, St. Petersburg, Russia

Актуальность. Инвазивный зигомикоз — тяжелое заболевание, частота которого в последние годы увеличиваются у разных категорий иммунокомпрометированных больных. Данные об этом заболевании в нашей стране ограничены.

Цель исследования — провести анализ факторов риска, клинической симптоматики, результатов лечения инвазивного зигомикоза в Санкт-Петербурге.

Методы. Проспективное исследование больных зигомикозом в Санкт-Петербурге (использовали критерии EORTC/MSG).

Результаты. В 2002-2009 гг. наблюдали 10 больных инвазивным зигомикозом в возрасте от 12 до 60 лет (медиана — 36 лет). Из них: 5 женщин и 5 мужчин. У 5 больных фактором риска инвазивного зигомикоза были хирургические вмешательства, у 2 — миелоидная саркома, у 3 — декомпенсированный сахарный диабет. В двух случаях фактором риска являлся пневмонит. У 1 больного — декомпенсированный сахарный диабет. В двух случаях фактором риска являлось поражение микроскопических слизистых оболочек, в которых проживали пациенты. У 4 больных развился зигомикоз придаточных пазух носа, у 3 больных — зигомикоз легких, у 1 больного — риноценебральный зигомикоз, у 1- больного диссеминированный зигомикоз.

У всех больных диагноз зигомикоза был подтвержден гистологическим исследованием материала из очагов поражения, где выявляли широкие нити несептированного зигомикоза. У 3 больных возбудитель был выделен в культуре, в 2 случаях — Rhizopus spp., в одном — Absidia corinhibera.

Все больные получили лечение. Хирургическая опе-
рация проведена 5 пациентам. Антифунгальную терапию проводили 8 больным, два пациента отказались от лечения антимикотиками. Всем больным получали амфотерцин B в дозе 1мг/кг/сут, в дальнейшем двое из них получали липосомальный амфотерцин B по 3мг/кг/сут, один пациент — позаконазол 800 мг/сут. Продолжительность лечения составила от 28 дней до 4 месяцев. Общая выживаемость в течение 3-х месяцев составила 80% (8 из 10 больных).

Выводы. Зиомикоз — тяжелое заболевание — необхо-
димо быстрая диагностика, адекватное комбинированное
лечение и устранение факторов риска.

МИКОБИОТА МОКРОТЫ БОЛЬНЫХ ПРОФЕССИОНАЛЬНЫМ БРОНХИТОМ

Хуснаризанова Р.Ф., Мингазова С.Р., Бакиров А.Б., Шагалина А.У.
ФГУН Уфимский НИИ медицины труда и экологии человека
Республиканской, Уфа, Россия

В структуре профессиональной заболеваемости рабо-
тавющего населения Республики Башкортостан патология
органов дыхания составляет 29,7% случаев, в том числе
доля хронических бронхитов — 35,5%.

Течение профессионального хронического бронхита
характеризуется развитием обострений, большинство ко-
торых имеет инфекционную природу: бактериальную — 40-
60%, вирусную – 30%, атипичную – 10%.

Цель наших исследований — выявление частоты инфи-
цированности дрожжеподобными и плесневыми грибами
больных профессиональным хроническим бронхитом.

Материал и методы. Проанализированы истории бо-
лезни и результаты микробиологических исследований
мокроты 239 больных хроническим профессиональным
bronхитом в возрасте от 38 до 75 лет (средний возраст —
55,75±9,69 лет), находившихся на стационарном обследо-
вании в клинике УфНИИ МТ ЭЧ в 2007-2008 гг. Мужчи-
ны — 57,2%, женщины — 42.8%.

Результаты. При микробиологическом исследовании
мокроты, выделенной больными хроническим професси-
ональными бронхитами с различной степенью тяжести и
разными вариантами течения (пылевой, токсико-пылевой,
с вторичной бронхиальной астмой), Candida sp. обна-
ружены у 35,56% обследованных лиц, плесневые грибы
родов Aspergillus и Penicillium (4:2) — у 2,51%, сочетание
dрожжеподобных и плесневых грибов (родов Candida и
Penicillium) — у 1,26% пациентов.

Большинство штаммов дрожжеподобных грибов
(62,35%) составили C. albicans, 14,12% — C. tropicalis, 9,41%
— C. glabrata, 7,06 — C. parapsilosis, 3,35% — C. krusei, 3,35%
— другие. Как правило, их выделяли в ассоциациях с бак-
tериями, в частности с S. aureus — в 43,53% случаев, с M.
catarrhalis — в 27,06%, с патогенными энтеробактериями
— в 16,47%.

В результате комплексного подхода к терапии инфек-
ционных грибково-бактериальных осложнений и адекват-
ного назначения антимикробных препаратов, было прове-
дено успешное лечение обострения хронических профес-
сиональных бронхитов.

ЗАБОЛЕВАЕМОСТЬ МИКОЗАМИ СТОП И ОСОБЕННОСТИ ИХ
КЛИНИЧЕСКОГО ТЕЧЕНИЯ

Чащин А.Ю., Иншакова Н.Г., Шпакова Н.А.
Кафедра дерматовенерологии ИГМУ, г. Иркутск, Россия

SICK RATE WITH FEET MYCOSES STOP AND PECULIARITIES OF THEIR
CLINICAL FLOW

Chaschin A.J., Inshakova N.G., Shpakova N.A.
Medical University, Dermatological Clinic, Irkutsk, Russia

Микозы стоп являются наиболее распространен
ной формой грибковых заболеваний. В последние годы увеличилось число больных микозами стоп и онихомикозами.

Цель — изучить заболеваемость и особенности
текущего микозов стоп по данным областного кожно-
венерологического диспансера за 6 лет (2003-2008 гг.)

Материалами для исследования явились годо-
вые отчеты ОКВД, кроме того, изучали клинико-
etно-эпидемиологические особенности микозов стоп у 197
больных.

Результаты. При анализе материалов наблюдали еже-
годный рост заболеваемости микозами стоп. В 2003 году в
Иркутской области было зарегистрировано 2520 больных
микозами стоп, из них у 1411 (56%) был онихомикоз; в 2005
году — 3319 случаев микозов стоп, из них у 2236 (67,4%)
онихомикозы. В г. Иркутске за 6 месяцев 2008 года было
552 случаев микозов стоп и 674 случая онихомикозов. Эти
данные свидетельствуют о росте числа больных с микозами
стоп и особенно — с онихомикозами.

При анализе амбулаторных карт выявили, что из 197
больных микозами стоп женщины было 149 (75,6%), муж-
чины — 48 (24,4%). С возрастом увеличивается число боль-
ных с микозами стоп. Так, в возрасте 10-19 лет было всего
4% пациентов, 20-29 лет и 30-39 лет микоз регистрировали
однаково часто — 11,2%, 40-49 лет — 16,7%, 50-59 лет —
17,9, старше 60 лет — 39,7%. Особенно заметно увеличение
больных с онихомикозами стоп и кистей. Если в возрасте
50-59 лет было 33 больных, то у лиц старше 60 лет они-
хомикоз выявляли у 66. 87,6% больных ранее не лечились
и обратились впервые. При культуральном исследовании
чаще всего обнаруживали красный трихофитон. У части
больных красный трихофитон был в ассоциации с Candida
spp. и Scopulariopsis brevicaulis.

Таким образом, заболеваемость микозами стоп ежегодно растет, причем с возрастом увеличивается число больных с онихомикозами. Среди пациентов преобладают женщины (75,6%). Наличие при онихомикозах ассоциаций красного трихофитона с дрожжевыми и плесневыми грибами отягощает течение онихомикозов, усиливает грибковую сенсибилизацию и приводит к более распространенному процессу при микозах стоп. Это выдвигает необходимость использования антимикотиков широкого спектра действия.

ИСПОЛЬЗОВАНИЕ МЕСТОЙ ИММУНОТЕРАПИИ В КОМПЛЕКСНОМ ЛЕЧЕНИИ ХРОНИЧЕСКОГО РЕЦИДИВИРУЮЩЕГО КАНДИДОЗНОГО ВУЛЬВОВАГИНИТА

Шабашова Н.В.1, Мирзабалаева А.К.1, Фролова Е.В.1, Учеваткина А.Е.1, Филиппова Л.В.1, Симбарская М.Л.2
1НИИ медицинской микологии им. П.Н. Кашкина ГОУ ДПО СПб МАПО; 2Клиника им. Н.И. Пирогова, Санкт-Петербург, Россия

В последнее время в многочисленных научных работах была доказана роль локальной иммунореактивности клеток слизистой оболочки влагалища в патогенезе рецидивирующих вульвовагинитов различной этиологии. Из наших многолетних исследований следует, что возможной причиной хронического течения инфекционного процесса может быть дисбаланс выработки цитокинов – ведущих регуляторных молекул иммунной защиты слизистой оболочки. Этим обусловлена целесообразность использования местной иммунотерапии в комплексном лечении хронического рецидивирующего кандидозного вульвовагинита (ХРКВ). Иммуномодулятор «Гепон» обладает противовоспалительным и регенерирующим эффектами за счет регуляции синтеза и соотношения провоспалительных цитокинов ИЛ-1β (112,9 пг/мл), ИЛ-8 (264,9 пг/мл), дефензинов (1303 мкг/мл) и снижением ТФР-β (383,7 пг/мл), вырабатываемого Т-регуляторными клетками, который ответственен за поддержание состояния толерантности иммунокомпетентных клеток слизистой оболочки к нормальной микрофлоре. Обострение ХРКВ сопровождалось достоверным (р<0,05) снижением содержания провоспалительных цитокинов ИЛ-1β (112,9 пг/мл), ИЛ-8 (264,9 пг/мл), дефензинов (1303 мкг/мл) и увеличением ТФР-β (383,7 пг/мл). Это свидетельствует об активации иммунокомпетентных клеток к фагоцитозу.

После элиминации возбудителя с применением антимикотической терапии отмечали резкое снижение уровней провоспалительных цитокинов и дефензинов на фоне достоверного (р<0,05) снижения ТФР-β (383,7 пг/мл), которое поддерживает местную воспалительную активность.

Местное применение «Гепона» после курса антимикотической терапии у 11 женщин приводило к достоверному повышению содержания провоспалительных цитокинов (ИФН-γ – 75,03 пг/мл против 66,2 пг/мл, ИЛ-8 – 276,1 пг/мл против 33,0 пг/мл, р<0,05), которые поддерживают местную иммунореактивность.

Выводы. Интратравмальное применение иммуномодулятора «Гепон» позволяет поддерживать активность иммунокомпетентных клеток слизистой оболочки влагалища после элиминации возбудителя.
КОМПЛЕКСНЫЙ МЕТОД ЛЕЧЕНИЯ ДРОЖЖЕВЫХ ПОРАЖЕНИЙ КОЖИ, КАНДИДОЗНЫХ ОНИХИЙ И ПАРОНИХИЙ С ПРИМЕНЕНИЕМ СОВРЕМЕННЫХ ИММУНОМОДУЛЯТОРОВ
Шебашова Н.В., Клеменова И.А., Мишина Ю.В.
ФГУ «Нижегородский НИКВИ», Нижний Новгород, Россия

В настоящее время в научной литературе сообщают о неудачах лечения кандидозных онихий и паронихий, дрожжевых поражений кожи и большом проценте рецидивов заболевания. При этом больным проводят лечение с использованием лишь противогрибковых средств без учета состояния иммунного статуса.

Объекты и методы. Под нашим наблюдением находилось 112 взрослых пациентов и 46 детей с клиническими признаками поражения кожи и ногтевых пластинок кистей и стоп кандидозной этиологии. Рост Candida spp. на среде Сабуро обнаружили у 65 взрослых пациентов (58% от общего количества наблюдавшихся больных). Выполнили видовую идентификацию дрожжей, определяли чувствительность Candida spp. к антифунгальным препаратам. При исследовании иммунограмм у 49 больных выявили подавление клеточного иммунитета в виде снижения относительного содержания цитотоксических Т-клеток (CD 8+) у 19% и CD 4+ Т лимфоцитов хелперов — у 35% пациентов, а также снижение относительного содержания CD 19+ лимфоцитов — у 14%. Выявлены низкие уровни основных провоспалительных цитокинов ИЛ 4 и ИЛ6 у больных с кандидозными поражениями кожи и ногтевых пластинок, что подтверждает снижение функциональной активности CD 4+ лимфоцитов (Тх 2), секретирующих данные интерлейкины.

Проводили комплексное лечение пациентов с использованием современных иммуномодуляторов (дерината и нуклеината натрия) с учетом выявленных изменений в иммунном статусе, системных и местных антимикотиков (итраконазола или флуконазола) и поливитаминно-микроэлементных лекарственных препаратов (мерц, пантоген, цинктерал). Включение иммуномодуляторов позволило сократить количество пульсов терапии итраконазолом по сравнению с группой пациентов, принимающих только системные антимикотики. Побочных эффектов не отмечали. После проведенного курса лечения имела место полная клинико-лабораторная ремиссия.

ХРОНИЧЕСКИЕ ГИПЕРПЛАСТИЧЕСКИЕ ЛАРИНГИТЫ, ОСЛОЖНЕННЫЕ ГРИБКОВОЙ ИНФЕКЦИЕЙ: ДИАГНОСТИКА И ЛЕЧЕНИЕ
Шляга И.Д., Сердюкова О.А., Петкевич М.М.
УО «Гомельский государственный медицинский университет», г.Гомель, Республика Беларусь

Цель работы — провести комплексное лечение пациентов с различными формами хронических гиперплазических ларингитов (ХГЛ), осложненных грибковой инфекцией, с применением иммунокорригирующего препарата — поликсидония на основе выявления клинико-иммунологических особенностей течения данной патологии.

Материалы и методы. Обследовано и пролечено 47 пациентов [39 (83%) мужчин и 8 (17%) женщин] с различными формами ХГЛ, осложненных грибковой инфекцией. Средний возраст составил 45±7, длительность заболевания от 1 года до 20 лет. Всем больным проводили комплексное обследование: общеклиническое, оториноларингологическое, микробиологическое, иммунологическое, гистологическое. Основную группу составили 27 пациентов (23 мужчины и 4 женщины), которым проводили комплексное лечение: антибактериальные, антимикотические, антигистаминные, муколитические препараты в сочетании с поликсидонием (НПО ПетроваксФарм, РФ; рег.уд. № 750305 МЗ РБ). Поликсидоний обладает иммуномодулирующими, мембранопротекторными, детоксицирующими и антиоксидантными свойствами. В контрольную группу включено 20 человек (16 мужчин и 4 женщины), получавших комплексное лечение без поликсидония. Всем пациентам в плане комплексного лечения проводили антимикотическую терапию (с учетом бактериологических исследований и антимикотикочувствительности) по схеме: флуконазол (дифлокс) по 100 мг 1 раз в сутки в течение 14 дней или итраконазол (микотрокс) по 100-200 мг 1 раз в сутки в течение 14 дней, гипосенсибилизирующая терапия, муколитики (геломиртол, амброксол), антибактериальная терапия (по показаниям) — флемоклав, флемоксин солютаб, вильпрафен. Пациентам основной группы применяли поликсидоний по схеме: по 6 мг в/м №5 через день, затем 1 раз в неделю №2-3 в сочетании с эндоларингеальными инстилляциями по 3 мг 1-2 раза в сутки в течение 10 дней, наружу с маслом шиповника, ментоловым, ингаляции через рот с амфотерицином В №8-10.

Результаты. После лечения больных с применением поликсидония имела место положительная динамика
основных клинических и иммунологических показателей, в отличие от контрольной группы больных, получавших традиционное лечение.

Выводы. Включение в общую схему лечения иммуно-модулирующего препарата полиоксидоний, наряду с проведением комплексной антимикотической и антибактериальной терапии с учетом чувствительности патогенов к используемым лекарственным средствам, сопровождается стабилизацией патологического процесса, более длительной ремиссией заболевания, а также предупреждением развития процессов дискератоза, малигнизации и ряда других осложнений.

УЧАСТИЕ CANDIDA SPP. В ФОРМИРОВАНИИ ВОСПАЛИТЕЛЬНЫХ ЗАБОЛЕВАНИЙ РАЗЛИЧНОЙ ЛОКАЛИЗАЦИИ

Юцковский А.Д.*, Кулagina Л.М.*, Паулов О.И.**, Сингур Л.Г.*, Дубяк Н.С.*

*Владивостокский государственный медицинский университет, **Краевой клинический кожно-венерологический диспансер, г. Владивосток, Россия

Цель исследования — изучение удельной роли Candida spp. в формировании воспалительных заболеваний различной локализации.

Материалы и методы. Материалом для микологического исследования служили мазки со слизистой оболочки зева, носа, ушного прохода, красной каймы губ, конъюнктивы глаз. Для выделения грибов использовали агаризированную и жидкую среду Сабуро. Идентификацию до вида проводили с помощью теста Auxacolor 2 (BIO-RAD).

Результаты. За период с 2007 по 2008 гг. обследовано 352 человека, обратившихся в микологическую лабораторию КККВД г. Владивостока, являющейся клинической базой кафедры дерматовенерологии ВГМУ. Данная группа состояла из 265 (75,3%) женщин и 87 (24,7%) мужчин. Среди обследованных было 98 (27,8%) человек с отитом. При комплексном обследовании 98 пациентов с подозрением на отомикоз были получены следующие результаты. В условиях Приморского края аспергиллезный отомикоз часто сопровождается и кандидозным. Монокультура получена у 8 (8,2%) человек, в микст-культуре с Candida spp. — у 12 (12,2%). Из аспергиллов, как и везде, преобладал A. niger — у 19 (82,6%) пациентов. C. albicans не является преобладающим видом среди дрожжеподобных грибов (5,1%), а C. parapsilosis является наиболее часто выделяемым видом (55%). При обнаружении в препарате истинных гиф, псевдомицелия и ростовых трубок посев на среду всегда дает положительный результат (24%). У 39,8% пациентов в отделении из ушных ходов микроскопически были обнаружены только покидающие бластоцисты, у 59% из них рост грибов на средах не было, а у 41% отмечали рост грибов. Результат микроскопии был отрицательным у 35,7%, у 77,1% из них на средах рост грибов не было.

Таким образом, благодаря сочетанию различных методов диагностики удается наиболее полно и достоверно диагностировать возбудитель при отомикозах, и, соответственно, врачу определять лечебную тактику.

РЕКОМЕНДУЕМЫЕ КРАТНОСТЬ И ЧАСТОТА КЛИНИКО-МИКОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ У БОЛЬНЫХ ОНИХОМИКОЗАМИ ПОСЛЕ СИСТЕМНОЙ ТЕРАПИИ

Яковлев А.Б.

ГОУ ДПО Российская медицинская академия последипломного образования, ГУ ДЗМ кожно-венерологический диспансер №16, Москва, Россия

В настоящее время в доступной научной литературе отсутствуют четкие рекомендации по кратности и частоте клинико-лабораторных исследований после системной терапии онихомикозов (СТО). Цель работы — разработать рекомендации по кратности клинико-микологических исследований у больных с онихомикозами стоп (кистей) после проведения СТО.

Материалы и методы. Под нашим наблюдением находились 120 больных, среди них: с онихомикозами только стоп – 99, стоп и кистей – 16, только кистей – 5. Всем больным диагноз подтверждался обнаружением гриба с помощью КОН-теста. Все пациенты получали по показаниям комбинированную терапию — наружную и системную (применение одного из современных антимикотиков); лечение тербинафином получили 87 человек, итраконазолом — 30, флуконазолом — 3. Для клинико-лабораторного наблюдения (проведение контрольного КОН-теста) была предусмотрена следующая схема визитов больных к врачу: первый визит — через месяц, второй — через 2 месяца, третий — через 3 месяца. После второго визита принимали решение — либо о дополнительной СТО, либо о продолжении наблюдения при...
выраженной положительной динамике с четвертым визитом через 3 месяца (или через 6 месяцев, считая от окончания СТО). При благоприятном результате и этого теста, пятое исследование назначали через 6 месяцев (или через 12 месяцев от СТО).

Результаты. Полностью по данной схеме прошли обследование 79 человек, вплоть до снятия с диспансерного учета.

Выводы. Данная схема отличается простотой, доста точной комплаентностью для больного и наглядностью для специалиста при решении вопроса о снятии с учета.

ИЗУЧЕНИЕ ЭФФЕКТИВНОСТИ, БЕЗОПАСНОСТИ И ПЕРЕНОСИМОСТИ ПРЕПАРАТОВ «ТРАВОГЕН»® И «ТРАВОКОРТ»® У БОЛЬНЫХ МИКОЗАМИ КОЖИ

Якубович А.И., Корепанов А.Р., Дощанова Е.С., Чернингов О.А., Солдатова Т.И., Чуприкова Т.В., Залуцкая М.Л.

ГОУ ВПО Иркутский государственный медицинский университет; ГУЗ Областной кожно-венерологический диспансер, г. Иркутск, Россия

THE EFFECTIVENESS, SAFETY AND SIDE-EFFECTS OF «TRAVOGEN»® AND «TRAVOCORT»® IN MYCOSES OF THE SKIN

Yakubovich A.I., Korepanov A.R., Doshanova E.S., Chernigova O.A., Soldatova T.I., Chuprikova T.V., Zalutskaya M.L.

State Medical University, Irkutsk; Regional Dermatological and Venerological Health Center, Irkutsk, Russia

Дерматомикозы остаются одной из наиболее актуальных проблем дерматологии в силу их широкой распространенности среди населения и обилия нозологических форм.

Цель — изучение эффективности, безопасности и переносимости кремов «Травоген»® и «Травокорт»® у больных с ограниченными микозами кожи различной этиологии.

Методы исследования. Было проведено открытые наблюдательное исследование 30 пациентов с микозами разной этиологии и локализации, нуждающихся в наружной антимикотической терапии: с микозом стоп — 11 больных, с отрубевидным лишаем — 8, с микропорой гладкой кожи — 6, с паховой эпидермофитией — 3, с кандидозом околоногтевого валика II пальца правой кисти — 1 и с микозом кистей — 1. Клинический диагноз подтверждал обнаружением мицелия в чешуйках кожи из очагов поражения. Из сопутствующих заболеваний у 2 больных отрубевидным лишаем выявили хронический гастрит, у больного кандидозом околоногтевого валика — хронический пилонефрит, а также одиночные случаи псориаза, хронического гайморита и хронического пилонефрита. У 1 больного микозом стоп выявляли хронический гастрит у и 1 — гипертонию.

Для лечения 19 больных применяли крем «Травоген»® и у 11 — крем «Травокорт»®. Двум больным, вначале получавшим крем «Травокорт»®, в процессе лечения, после снятия островоспалительных явлений, был назначен крем «Травоген»®.

Результаты. По полученным клиническим и лабораторным данным можно констатировать о сохранении хорошего профиля эффективности, безопасности и переносимости препаратов «Травокорт»® и «Травоген»® и рекомендовать их в качестве перспективных наружных средств для лечения больных с ограниченными микозами кожи различной этиологии и локализации. Степень удовлетворённости пациентов препаратами «Травоген»® и «Травокорт»® оказалась достаточно высокой: 16 больным препараты очень понравились, 13 — понравились и только 1 пациент отнёсся безразлично, но все отмечали удобство и простоту их применения.
Конгрессы и конференции
Научно-практическая конференция по медицинской микологии
(ХII Кашкинские чтения)
17-18 ИЮНЯ 2009
САНКТ-ПЕТЕРБУРГ, РОССИЯ

Адрес для связи: 194291, Санкт-Петербург, ул. Саунд-де-Куба, 1/28
НИИ медицинской микологии им. П.Н. Кашкина ГОУ ДПО СПб МАПО
Тел.: (812) 510-62-40
Факс: (812) 510-62-77
E-mail: mycoconference@peterlink.ru
Заявку на участие в конференции присылать до 01 мая 2009 г.
Тезисы докладов присылать не позднее 15 мая 2009 г.

Scientific-Practical Conference on Medical Mycology
(XII Kashkin Readings)
June 17-18, 2009
Saint Petersburg, Russia

The contact address: 194291, Russia, Saint Petersburg, Santiago-de-Cuba str., 1/28
Kashkin Research Institute of Medical Mycology, SPb MAPE
Tel.: (812) 510-62-40
Fax: (812) 510-62-77
E-mail: mycoconference@peterlink.ru
Dead line to send abstract: May 15, 2009

4th Trends in Medical Mycology
18-21 October 2009
www.TIMM2009.ORG

Congress secretariat
Congress Care
P.O. Box 440
5201 AK’s-Hertogenbosch
The Netherlands
Tel +31-73-690-1415
Fax +31-73- 690-1417
info@congresscare.com
www.congresscare.com
The deadline for abstract submission is 1 June 2009
Call for Papers
Deadline for submission of abstracts: 19 November 2009

Preliminary Programme
The Preliminary Programme will be available in September 2009 and will include information on abstract submission, registration and hotel reservation. Please return the attached card to receive the Preliminary Programme.

Administrative Secretariat
20th ECCMID 2010
c/o AKM Congress Service
Association House
Freiestrasse 90
4002 Basel, Switzerland
Phone +41 61 686 77 11
Fax +41 61 686 77 88
E-mail: info@akm.ch
www.escmid.org/eccmid2010

Scientific Secretariat
20th ECCMID 2010
c/o ESCMID Executive Office
Association House
Freiestrasse 90
4002 Basel, Switzerland
Phone +41 61 686 77 99
Fax +41 61 686 77 98
E-mail: eccmid@escmid.org

9TH INTERNATIONAL MYCOLOGICAL CONGRESS (IMC9)
1-6 AUGUST 2010, EDINBURGH, SCOTLAND

The UK, including Scotland, has a long tradition of being at the forefront of international mycology. The BMS is the largest mycological society in the world and promotes mycology in all of its aspects. It also has an international membership representing virtually every country in which mycology is studied. The BMS will provide the local Organizing Committee for the Congress and bring to bear its immense experience in organizing and hosting international mycological meetings. As a primary sponsor of the Congress, it has already agreed to provide £100,000 to support the meeting. The BMS will also put considerable effort into obtaining further financial sponsorship to support speakers, provide travel bursaries, and keep registration costs low.

Besides the BMS, other Societies and Organizations have also agreed to contribute and support IMC9. These include the British Lichen Society, British Society for Medical Mycology, British Society for Plant Pathology, European Mycological Association, Society for Applied Microbiology, Society for General Microbiology, the Royal Botanic Gardens at Edinburgh, and the Royal Botanic Gardens at Kew.

Mycology has never been as important as it is today and this is undoubtedly the most exciting time to be studying the subject. The International Mycological Congress represents the most important forum to provide an up-to-date perspective of mycology in all its guises. The BMS will make sure that IMC9 contains a Scientific Programme which is tremendously stimulating, inspiring and balanced across the enormously diverse subject spectrum of mycology.

The Nobel Prize laureate and Honorary Member of the BMS, Sir Paul Nurse FRS, has provisionally agreed to give the opening lecture.

Edinburgh has everything to ensure a successful conference. The Edinburgh International Conference Centre will provide an outstanding venue for IMC9 with excellent facilities for up to 2,700 delegates. A wide range of accommodation from student halls of residence to all classes of hotels will be available to suit every budget, and this will be centrally bookable online. The opening reception would be held in the historic castle with its dramatic setting in the centre of the city.

Edinburgh is easily accessible with direct flights from many European cities and from the USA and Canada.

Edinburgh is widely regarded as one of the most outstanding tourist meccas in the world. The date for the conference will be the week before the Edinburgh Festival, which is the biggest arts festival on the planet. It will also coincide with the Jazz and Blues Festival. Numerous social and scientific activities before, during and after the meeting will also be available for delegates and their families, including tours around Edinburgh and Scotland, golf, fishing, field trips to major sites of international scientific interest, visits to research institutes, specialist workshops, field meetings and whisky tasting.

Professor Nick D. Read
Chair of the IMC9 Organizing Committee University of Edinburgh, nick@imc9.info